Cho a, b > 0. chứng minh:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
AI NHANH MÌNH TICK NHA!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình biết nè
ta đặt A= \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}+\frac{b^2}{b^2}\)
áp dụng bất đẳng thức svác sơ ta có
A=\(\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ac}+\frac{b^2}{b^2}>=\)\(\frac{\left(a+2b+c\right)^2}{ab+bc+ca}=\frac{\left(a+2b+c\right)^2}{\left(a+b\right)\left(b+c\right)}\)
=\(\frac{\left(a+b\right)^2+\left(b+c\right)^2+2\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)}\) =\(\frac{a+b}{b+c}+\frac{b+c}{a+b}+2\)
=> \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1>=\frac{a+b}{b+c}+\frac{b+c}{a+b}+2\)
=> \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>=\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\) (ĐPCM)
dấu = xảy ra <=> a=b=c=1
có gì giúp mình mấy câu phương trình vô tỉ nhé chúc bạn học và thi tốt
Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
dấu = xảy ra <=> x=y
Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)
dấu = xảy ra <=>a=b=1/2
\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)
\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)
\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Ta có: \(a^6+b^6\)
Mà ta có: \(\left(a^4+b^4\right)\cdot ab\)
Suy ra: \(a^6+b^6\ge\left(a^4+b^4\right)\cdot ab=a^5\cdot b+b^5\cdot a\)(Dấu ''='' xảy ra khi và chỉ khi a=b)
Suy ra: \(\frac{a^6+b^6}{ab}\ge a^4+b^4\)
Vậy: .....................
vì 1 phần mấy mà chả lớn hơn 0 9 / a+b+c =9a:2 b:2 c::2 nên a và b lớn hơn o k mình nha hứa rùi đó thực hiện 10 lần nhé
xin lỗi nhưng em không biết,bởi vì em mới học lớp 6 thôi nên không biết gì cả.Nếu em bằng tuổi anh chị thì em đã giúp rồi nhưng em chưa học đến nên không biết.Thông cảm cho em.T T
BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )
Vậy.......
\(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}=\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\)
Áp dụng BĐT Cauchy-Schwar dạng Engel ta có:
\(\frac{1^2}{a}+\frac{1^2}{b}+\frac{2^2}{c}+\frac{4^2}{d}\ge\frac{\left(1+1+2+4\right)^2}{a+b+c+d}\)
\(=\frac{8^2}{a+b+c+d}=\frac{64}{a+b+c+d}=VP\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}< =>\frac{a+b}{ab}\ge\frac{4}{a+b}< =>\left(a+b\right)^2\ge4ab< =>\left(a-b\right)^2\ge0\left(lđ\right).\)
Dấu "=" xảy ra khi a=b
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luon dung)