K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

\(x^3-x=x.\left(x^2-1\right)=x.\left(x^2-1^2\right)=x.\left[\left(x-1\right)\left(x+1\right)\right]=x.\left(x-1\right)\left(x+1\right)\)

Vì (x - 1) ; x ; (x + 1) là 3 số nguyên liên tiếp 

Nên luôn tồn tại một số chia hết cho 3 trong 3 số bất kỳ này 

Mặt khác , cũng có số chia hết cho 2 vì :

Thử xét x lẻ thì :

+ (x - 1) là dương , x là lẻ => (x - 1).x chẵn

+ (x + 1) là dương , x là lẻ => (x + 1).x chẵn 

Ta cũng xét vậy với x chẵn

Từ các ý trên , ta có :

\(\left(x-1\right).x.\left(x+1\right)⋮3\)

\(\left(x-1\right).x.\left(x+1\right)⋮2\)

\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮6\) (điều cần chứng minh)

2 tháng 6 2017

\(x3-x=x\left(x^2-1\right)\)=\(x\left(x-1\right)\left(x+1\right)\)là tích của 3 số nguyên liên tiếp nên chia hết cho 2,3 suy ra chia hết cho 6 (dpcm)

4 tháng 10 2018

\(A=x^4-6x^3+27x^2-54x+32\)

\(=x^4-5x^3+22x^2-32x-x^3+5x^2-22x+32\)

\(=x\left(x^3-5x^2+22x-32\right)-\left(x^3-5x^2+22x-32\right)\)

\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)

\(=\left(x-1\right)\left(x^3-3x^2+16x-2x^2+6x-32\right)\)

\(=\left(x-1\right)\left[x\left(x^2-3x+16\right)-2\left(x^2-3x+16\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)

Vì \(x\in Z\)=> x-1;x-2 là 2 số nguyên liên tiếp => \(\left(x-1\right)\left(x-2\right)⋮2\)

\(\Rightarrow A=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)⋮2\) hay A là số chẵn (đpcm)

4 tháng 10 2018

\(A=x^4-6x^3+27x^2-54x+32\)

\(=x^4-x^3-5x^3+5x^2+22x^2-22x-32x+32\)

\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)

\(=\left(x-1\right)\left[x^2\left(x-2\right)-3x\left(x-2\right)+16\left(x-2\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)

Vì \(\left(x-1\right)\left(x-2\right)⋮2\) nên A là số chẵn với mọi x thuộc Z

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

30 tháng 1 2017

a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6

=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)

=(x-3)(2x3-x2-5x-2)

=(x-3)(2x3-4x2+3x2-6x+x-2)

=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]

=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)

b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)

=(x-3)(x-2)(x+1)[2(x-1)+3]

=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)

vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2

=>3(x-3)(x-2)(x+1) chia hết cho 6

lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6 

Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z 

8 tháng 8 2017

 =x3-7x+6

=x3-2x2+2x2-4x-3x+6

=x2(x-2)+2x(x-2)-3(x-2)

=(x-2)(x2+2x-3)

=(x-2)(x2+2x+1-4)

=(x-2)[(x+1)2-4]

=(x-2)(x+1-2)(x+1+2)=(x-1)(x-2)(x+3)                                                            

x3 - 7x + 6

= x3 - 2x2 + 2x2 - 4x - 3x + 6

= x2 ( x - 2 ) + 2x ( x - 2 ) + 3 ( x - 2 )

= ( x2 + 2x + 3 ) ( x - 2 )

= ( x2 + 2x + 1 - 4 ) ( x - 2 )

= [ ( x + 1 )2 - 22 ] ( x - 2 )

= ( x + 1 - 2 ) ( x + 1 + 2 ) ( x - 2 )

= ( x - 1 ) ( x + 3 ) ( x - 2 )

18 tháng 6 2017

d) x^6 + y^6 = (x^2)^3 + (y^2)^3 

= (x^2 + y^2)(X^2 - x^2.y^2 + y^2)

c) = (x+y)^3 + 3(x+y)^2z + 3((x+y)z^2 + z^3 - X^3 - Y^3 - z^3

= (x+y)^3 + 3(x+y)^2z + 3((x+y)z^2  - (x+y)(x^2 - xy + y^2)

= (x+y)[(x+y)^2 + 3(x+y)z + 3z^2 - x^2 + xy - y^2]

= (X+y)(x^2 + 2xy + y^2 + 3xz + 3yz + 3z^2 - x^2 + xy - y^2)

= (x+y)(3xy + 3xz + 3z^2 + 3yz)

= (x+y)[3x(y+z) + 3z(y+z)]

=3(x+y)(y+z)(x+z)

Đúng thì  

23 tháng 7 2015

x^2(x-3)+12-4x = x^2(x-3)+4(3-x) = x^2(x-3)-4(x-3) = (x-3)(x^2-4) = (x-3)(x-2)(x+2) 


n^3-n=n(n^2-1) = n(n+1)(n-1)

Ta thấy tích trên là tích 3 số tự nhiên liên tiếp luôn chia hết cho 6

Vậy n^3-n luôn chia hết cho 6

 

7 tháng 1 2018

\(x^2-2xy+y^2+4x-4y-5\)

\(=\left(x-y\right)^2+4\left(x-y\right)+4-9\)

\(=\left(x-y+2\right)^2-9\)

\(=\left(x-y+2+3\right)\left(x-y+2-3\right)\)

\(=\left(x-y+5\right)\left(x-y-1\right)\)

7 tháng 1 2018

a, = (x^2-2xy+y^2)+(4x-4y)-5

    = (x-y)^2+4.(x-y)-5

    = [(x-y)^2+4.(x-y)+4]-9

    = (x-y+2)^2-9

    = (x-y+2-3).(x-y+2+3)

    = (x-y-1).(x-y+5)

b, Xét : A = n^3+n+2 = (n^3+n)+2 = n.(n^2+1)+2

Nếu n chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Nếu n lẻ => n^2 lẻ => n^2+1 chẵn => n.(n^2+1) chia hết cho 2 => A chia hết cho 2

Vậy A chia hết cho 2 với mọi n thuộc N sao

Mà n thuộc N sao nên n.(n^2+1)+2 > 2

=> A là hợp số hay n^3+n+2 là hợp số

=> ĐPCM

Tk mk nha