K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

\(\left(3x^3y-\frac{1}{2}x^2+\frac{1}{5}xy\right)6xy^3\)

\(=18x^4y^4-3x^3y^2+\frac{6}{5}x^2y^4\)

18 tháng 4 2023

`P=3x^3 y-6xy^3 +2x^3 y+6xy^3`

`P=(3x^2 y+2x^3 )-(6xy^3 -6xy^3)`

`P=5x^3 y`

    `=>B`

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

a: \(=\dfrac{27}{10}\cdot\dfrac{5}{9}\cdot x^4y^2\cdot xy=\dfrac{3}{2}x^3y^3\)

bậc là 6

b: \(=\dfrac{1}{3}x^3y\cdot x^2y^2=\dfrac{1}{3}x^5y^3\)

Bậc là 8

c: \(=-2x^2y\cdot\dfrac{1}{4}x\cdot y^6z^3=-\dfrac{1}{2}x^3y^7z^3\)

Bậc là 13

28 tháng 9 2017

Ta có hệ \(\hept{\begin{cases}x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\left(1\right)\\xy+\frac{1}{xy}=\frac{5}{2}\left(2\right)\end{cases}}\)

ĐK: \(x\ne0,y\ne0\)

Từ phương trình (2) ta có \(\frac{x^2y^2+1}{xy}=\frac{5}{2}\Rightarrow2x^2y^2-5xy+2=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{y}\\x=\frac{1}{2y}\end{cases}}\)

TH1: \(x=\frac{2}{y},\) thế vào phương trình (1) ta có: 

 \(\frac{2}{y}+y+\frac{y}{2}+\frac{1}{y}=\frac{9}{2}\Rightarrow\frac{3y}{2}+\frac{3}{y}=\frac{9}{2}\Rightarrow\frac{y}{2}+\frac{1}{y}=\frac{3}{2}\)

\(\Rightarrow\frac{y^2+2}{2y}=\frac{3}{2}\Rightarrow2y^2-6y+4=0\Rightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\) 

TH2: \(x=\frac{1}{2y},\)

Thế vào phương trình (1) ta có: 

 \(\frac{1}{2y}+y+2y+\frac{1}{y}=\frac{9}{2}\Rightarrow3y+\frac{3}{2y}=\frac{9}{2}\Rightarrow y+\frac{1}{2y}=\frac{3}{2}\)

\(\Rightarrow\frac{2y^2+1}{2y}=\frac{3}{2}\Rightarrow4y^2-6y+2=0\Rightarrow\orbr{\begin{cases}y=1\\y=\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\) (Vô nghiệm)

Tóm lại, ta có 4 cặp nghiệm \(\left(1;2\right),\left(2;1\right),\left(1;\frac{1}{2}\right),\left(\frac{1}{2};1\right)\)

20 tháng 11 2017

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)

\(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)

\(=-\dfrac{1}{8}+\dfrac{1}{6}-\dfrac{1}{18}=\dfrac{-9}{72}+\dfrac{12}{72}-\dfrac{4}{72}=-\dfrac{1}{72}\)

Câu b đề sai rồi bạn

24 tháng 10 2016

Xét pt thứ 2 ta có

\(xy+\frac{1}{xy}=\frac{5}{2}\)

\(\Leftrightarrow2x^2y^2-5xy+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}xy=2\\xy=\frac{1}{2}\end{cases}}\)

Xét pt 1 ta có

\(x+y+\frac{1}{x}+\frac{1}{y}=\frac{9}{2}\)

\(\Leftrightarrow2\left(x+y\right)+\frac{2\left(x+y\right)}{xy}=9\left(3\right)\)

Thế xy = 2 vào (3) ta được

\(\hept{\begin{cases}3\left(x+y\right)-9=0\\xy=2\end{cases}}\)

\(\Rightarrow\left(x,y\right)=\left(1,2;2,1\right)\)

Thế xy = \(\frac{1}{2}\)vào (3) ta được

\(\hept{\begin{cases}6\left(x+y\right)-9=0\\xy=\frac{1}{2}\end{cases}}\)

\(\Rightarrow\left(x,y\right)=\left(1,\frac{1}{2};\frac{1}{2},1\right)\)

NV
22 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=\frac{9}{2}\\\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=5\end{matrix}\right.\)

Theo Viet đảo, \(x+\frac{1}{x}\)\(y+\frac{1}{y}\) là nghiệm:

\(t^2-\frac{9}{2}t+5=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{5}{2}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+\frac{1}{x}=2\\y+\frac{1}{y}=\frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\2y^2-5y+2=0\end{matrix}\right.\)

Th2: \(\left\{{}\begin{matrix}2x^2-5x+2=0\\y^2-2y+1=0\end{matrix}\right.\)

17 tháng 9 2019

Dat \(x+y=t;xy=v\left(t,v\ne0\right)\)

HPT tro thanh 

\(\hept{\begin{cases}t+\frac{t}{v}=\frac{9}{2}\\v+\frac{1}{v}=\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}t+\frac{t}{v}=\frac{9}{2}\left(1\right)\\v^2-\frac{5}{2}v+1=0\left(2\right)\end{cases}}\)

Xet (2):

\(\Delta=\frac{25}{4}-4=\frac{9}{4}\)

Suy ra:

\(v_1=4;v_2=1\)

Voi \(v=4\)thi thay vao HPT thay khong thoa man nen loai 

Voi \(v=1\)thay vao HPT thay khong thoa man nen loai 

Vay HPT vo nghiem 

18 tháng 1 2020

Violympic toán 9

~~~ Chẳng chắc nữa ~~~