Phân tích đa thức thành nhân tử:
\(x^4+2008x^2+2007x+2008\)
Giải phương trình:
\(x^2\)-3x+2+ lx-1l
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
x^4 + 2008x^2 + 2007x + 2008
\(=x^4+x^2+2007x^2+2007x+2007+1\)
\(=x^4+x^2+1+2007\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)^2-x^2+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
x^4+2008x^2+2007x+2008
=x^4+2008x^2+2008x-x+2008
=(x^4-x)+(2008x^2+2008x+2008)
=x(x^3-1)+2008(x^2+x+1)
=x(x-1)(x^2+x+1)+2008(x^2+x+1)
=(x^2+x+1)(x^2-x+2008)
x4+2008x2+2007x+2008
<=> x4-x+2008x2+2008x+2008
<=> x(x3-1)+2008(x2+x+1)
<=> x(x-1)(x2+x+1)+2008(x2+x+1)
<=> (x2+x+1)(x2-x+2008)
\(\left(x^4+x^2+1\right)+\left(2007x^2+2007x+2007\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
=x4+2008x2+2008x-x+2008
=(x4-x)+(2008x2+2008x+2008)
=x(x3-1)+2008(x2+x+1)
=x(x-1)(x2+x+1)+2008(x2+x+1)
=(x2+x++1)(x2-x+2008)
a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)
\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)
\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
a.\(x^2+7x+6\)
\(=x^2+x+6x+6\)
\(=x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(x+6\right)\)
Sửa đề:.\(x^4+2008x^2+2007x+2008\)
\(=x^4+x^2+1+2007x^2+2007x+2007\)
\(=\left(x^4+x^2+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2007\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
giải phương trình:
\(x^4+2008x^2+2007x+2008\)
\(=x\left[x\left(x^2+2008\right)+2007\right]+2008\)
\(=\left[\left(x-1\right)x+2008\right]\left(x^2+x+1\right)\)
\(=\left(x^2-x+2008\right)\left(x^2+x+1\right)\)
~(‾▿‾~)