\(\hept{\begin{cases}x-y=1\\xa+y=a\end{cases}}\)
Tìm a để hpt có nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ \(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
Trừ vế theo vế của 2 pt trên ta đc
\(\left(x-y\right)\left(x^2+y^2+xy-3x-3y+a\right)=0\)(chỗ này mk làm hơi tắt , bn cố hiểu nhé ^^ )
*Nếu x=y thay vào phương trình đầu ta có
\(x^3-5x^2+ax=0\)
\(\Leftrightarrow x\left(x^2-5x+a\right)=0\)
dạng này thường biến đổi 1 ẩn theo ẩn còn lại bạn rút x theo y hay y theo x cx đk, sau đó biến đổi 2 ẩn x,y theo a rồi xem điều kiện của x,y là ta tìm đc đk của a
Làm ra luôn nha.
Ta có:\(\hept{\begin{cases}a\ne0\\a\ne2\end{cases}}\) Hệ có nghiệm: \(\hept{\begin{cases}x=\frac{a^2+4a+5}{a+2}\\y=\frac{a^3+5a^2+4a-5}{a\left(a+2\right)}\end{cases}}\)
Theo đề: Tìm \(a\in Z\) để \(x\in Z\)
\(x=a+2+\frac{1}{a+2}\)
\(a=-1\Rightarrow\) Nghiệm hệ là: \(\left(2;5\right)\)
Điều kiện để hệ có nghiệm duy nhất là \(\frac{1}{a}\ne\frac{-1}{1}\Leftrightarrow a\ne-1\)