S=1/1.4+1/4.7+...+1/304.307
đang cần vội làm giúp !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta nhân 3 cả hai vế, được :
\(\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{102.105}\right)x=3\)
hay
\(\left(\frac{4-1}{1.3}+\frac{7-4}{4.7}+...+\frac{105-102}{102.105}\right)x=3\) \(\Leftrightarrow\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{102}-\frac{1}{105}\right)x=3\)
\(\Leftrightarrow\left(1-\frac{1}{105}\right)x=3\Leftrightarrow\frac{104}{105}.x=3\Leftrightarrow x=\frac{315}{104}\)
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
a: =1/2-1/3+1/3-1/4+...+1/99-1/100
=1/2-1/100=49/100
b; =5/3(1-1/4+1/4-1/7+...+1/100-1/103)
=5/3*102/103
=510/309=170/103
c: =1/2(1/3-1/5+1/5-1/7+...+1/49-1/51)
=1/2*16/51=8/51
\(3B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}.\)
\(3B=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{103-100}{100.103}\)
\(3B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}=1-\frac{1}{103}=\frac{102}{103}\)
\(B=\frac{102}{3.103}=\frac{34}{103}\)
Để olm.vn giúp em nhá
C = \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.11}\)+...+ \(\dfrac{1}{994.997}\) + \(\dfrac{1}{997.1000}\)
C = \(\dfrac{1}{3}\).( \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.11}\)+...+ \(\dfrac{3}{994.997}\)+ \(\dfrac{3}{997.1000}\))
C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\)-\(\dfrac{1}{11}\)+...+ \(\dfrac{1}{994}\)- \(\dfrac{1}{997}\)+ \(\dfrac{1}{997}\) - \(\dfrac{1}{1000}\))
C = \(\dfrac{1}{3}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{1000}\))
C = \(\dfrac{1}{3}\). \(\dfrac{999}{1000}\)
C = \(\dfrac{333}{1000}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{94.97}\right).\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{94}-\frac{1}{97}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{97}\right)\)
\(=\frac{1}{3}.\frac{96}{97}\)
\(=\frac{32}{97}\)
học tốt
3A = 3(1/1.4 + 1/4.7 + 1/7.10 + ...... + 1/94.97)
3A=1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + 1/10 - ........ - 1/97
3A = 1-1/97
3A = 96/97
A = 32/97
Oke nha bạn
b) S = \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{2}.\frac{4949}{9900}\)
\(=\frac{4949}{19800}\)
\(S=\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+...+\dfrac{1}{304\cdot307}\)
\(3S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{304\cdot307}\)
\(\)\(3S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{304}-\dfrac{1}{307}\)
\(3S=1-\dfrac{1}{307}\)
\(3S=\dfrac{306}{307}\)
\(S=\dfrac{306}{307}\cdot\dfrac{1}{3}\)
\(S=\dfrac{102}{307}\)
\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{304.307}\)
\(S=\dfrac{1}{3}\left(1-\dfrac{1}{4}\right)+\dfrac{1}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}\right)+...+\dfrac{1}{3}\left(\dfrac{1}{304}-\dfrac{1}{307}\right)\)
\(S=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{304}+\dfrac{1}{304}-\dfrac{1}{307}\right)\)
\(S=\dfrac{1}{3}\left(1-\dfrac{1}{307}\right)\)
\(S=\dfrac{1}{3}.\dfrac{306}{307}\)
\(S=\dfrac{102}{307}\)