tìm m để bất phương trình 3 -mx < 2 (x-m) - (m+1)2
Giải hộ kb làm quen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
⇔m2x−mx−2x+m−2=0
⇔m2x−4x−mx+2x+m−2=0
⇔x(m−2)(m+2)−x(m−2)+(m−2)=0
⇔(mx+2x−x+1)(m−2)=0
⇔((m+1)x+1)(m−2)=0
⇒[x=−1m+1 m=2thì TM mọi x thuôộc R
m=2
Do x = 2 là nghiệm của bất phương trình đã cho nên:
⇔ 2m + 2 < 2 + 3 + m
⇔ 2m – m < 2 + 3- 2
⇔ m < 3
Chọn đáp án B
\(\Leftrightarrow\dfrac{mx^2-5x+m-4}{mx^2-4x+m-3}>0\)
BPT đã cho có tập nghiệm là R khi và chỉ khi:
\(\left\{{}\begin{matrix}\Delta_1=25-4m\left(m-4\right)< 0\\\Delta'_2=4-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4m^2+16m+25< 0\\-m^2+3m+4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m< \dfrac{4-\sqrt{41}}{2}\\m>\dfrac{4+\sqrt{41}}{2}\end{matrix}\right.\)
mx²+2(m-1)x+4 ≥0
bpt trên vô nghiệm <=>mx²+2(m-1)x+4 <0
a=m\(\ne0\)
\(\Delta'=\left(m-1\right)^2-m.4\)
\(=m^2-2m+1-4m\)
\(=m^2-6m+1\)
\(=\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)\)
bpt vô nghiệm <=>\(\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\3-2\sqrt{2}< m< 3+2\sqrt{2}\end{matrix}\right.\)
=> không có m để bất phương trình vô nghiệm
Nhận xét rằng khi thay x=0 vào hệ bất phương trình, ta được :
\(\begin{cases}0-1<3-0\\m.0+1>0\end{cases}\) \(\Leftrightarrow\begin{cases}-1<3\\1>0\end{cases}\)
Hệ này luôn đúng với mọi \(m\in R\)
Vậy với mọi \(m\in R\) , hệ bất phương trình đã cho luôn có ít nhất một nghiệm (x=0).
Do đó với \(m\in R\) hệ bất phương trình đã cho luôn có nghiệm
a, ĐK để pt có nghiệm \(\Delta'\ge0\Leftrightarrow9\left(m-2\right)^2-m\left(4m-7\right)\ge0\)
\(\Leftrightarrow9\left(m^2-4m+4\right)-4m^2+7m\ge0\)
\(\Leftrightarrow9m^2-36m+36-4m^2+7m\ge0\)
\(\Leftrightarrow5m^2-29m+36\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\le\frac{9}{5}\\x\ge4\end{cases}}\)
Vì pt có một nghiệm x1 = 2 nên
\(m.2^2+6\left(m-2\right).2+4m-7=0\)
\(\Leftrightarrow4m^2+12m-24+4m-7=0\)
\(\Leftrightarrow4m^2+16m-31=0\)(*)
Xét \(\Delta'_m=64+4.31=188>0\)
=> pt (*) có 2 nghiệm phân biệt
\(m_1=\frac{-16-\sqrt{188}}{8}\)
\(m_2=\frac{-16+\sqrt{188}}{8}\)
Bài này nghiệm xấu quá nên mk ko làm tiếp nữa :( Nếu cố tình làm tiếp thì bạn hãy xét 2 trường hợp của m rồi thay vào pt bạn đầu . Sau đó xét delta rồi dùng công thức nghiệm sẽ tìm đc x
b, Theo Vi-et \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6\left(2-m\right)}{m}=\frac{12-6m}{m}\\x_1.x_2=\frac{c}{a}=\frac{4m-7}{m}\end{cases}}\)
Do -2 < x1 < x2 < 4
Nên \(\hept{\begin{cases}x_1+2>0\\x_2-4< 0\end{cases}\Rightarrow\left(x_1+2\right)\left(x_2-4\right)< 0}\)
\(\Leftrightarrow x_1x_2-4x_1+2x_2-8< 0\)
Đến đây thì dễ rồi ! Bạn cố thay thế các kiểu để bpt này chỉ còn ẩn m rồi quy đồng lên giải . Nhớ kết hợp đk của m ở câu a nx . Muộn r ngủ đây pp