Tìm giá trị của đa thức x2-2xy-9x2+y2 tại x=6, y=-4, z=30
ai giải dùm mk đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x 2 – 2xy – 4 z 2 + y 2 = ( x 2 – 2xy + y 2 ) – 4 z 2
= x - y 2 - 2 z 2 = (x – y + 2z)(x – y – 2z)
Thay x = 6; y = -4; z= 45 vào biểu thức ta được:
[ 6- (- 4) + 2.45]. [6- (-4) – 2.45]
= (6 + 4 + 90)(6 + 4 – 90) = 100.(-80) = -8000
\(a,x\left(x+6\right)\\ b,\left(9x-1\right)\left(9x+1\right)\\ c,\left(x+y\right)-3^2\\ =\left(x+y-3\right)\left(x+y+3\right)\\ d,\left(x-y\right)\left(x+y\right)-\left(x-y\right)\\ =\left(x-y\right)\left(x+y-1\right)\)
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
a) \(x^2-2xy-4z^2+y^2=\left(x-y\right)^2-4z^2=\left(x-y-2z\right)\left(x-y+2z\right)=\left(6+4-2.45\right)\left(6+4+2.45\right)=-8000\)b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48=3\left(x^2+4x-21\right)+\left(x^2-8x+16\right)+48=4x^2+4x+1=\left(2x+1\right)^2=\left(2.0,5+1\right)^2=4\)
a: Ta có: \(x^2-2xy+y^2-4z^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
\(=\left(6+4-2\cdot45\right)\left(6+4+2\cdot45\right)\)
\(=-8000\)
b: Ta có: \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+4x-21\right)+\left(x-4\right)^2+48\)
\(=3x^2+12x-63+x^2-8x+16+48\)
\(=2x^2+4x+1\)
\(=2\cdot\dfrac{1}{4}+4\cdot\dfrac{1}{2}+1\)
\(=\dfrac{7}{2}\)
\(x^2-2xy-9x^2+y^2=\left(x^2-2xy+y^2\right)-9x^2=\left(x-y\right)^2-9x^2=100-324=-224\)
*) đề cho thừa z=30
có 2 cách:
cách 1 thì thay vào
cách 2 dùng hằng đẳng thức 2, 3