viết thành tích a) 25x^2-16 b)16a^2-9b^4 c) (2x+5)^2-(2x-5)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mình đánh máy vội nên sai mn đừng trả lời câu này nha !!!!
Tìm x:
a) x^3 - 25x = 0
b) (2x + 3)^2 = (x+4)^2
c) (2x-1)^2 - (2x-5)(2x+5) = 18
d) x^3 - 8 = (x-2)^3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-5^2\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
TH1: \(x=0\)
TH2: \(x+5=0\Rightarrow x=-5\)
TH3: \(x-5=0\Rightarrow x=5\)
a, x3-25x = 0
\(\Leftrightarrow\) x( x2- 25) = 0
\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}
b, (2x+3)2 = (x+4)2
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}
c, (2x-1)2 - (2x-5)(2x+5) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18
\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18
\(\Leftrightarrow\) -4x + 26 = 18
\(\Leftrightarrow\) -4x = -8
\(\Leftrightarrow\) x = 2
Vậy phương trình có tập nghiệm S = { 2}
d, x3 - 8 = ( x-2)3
\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8
\(\Leftrightarrow\) 6x2 - 12x = 0
\(\Leftrightarrow\) 6x( x- 2) = 0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm: S = {0; 2}
a: 25x^2-16=(5x-4)(5x+4)
b: 16a^2-9b^4
=(4a-3b^2)(4a+3b^2)
c: (2x+5)^2-(2x-5)^2
=(2x+5-2x+5)(2x+5+2x-5)
=4x*10=40x