K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ta có : n3+3n2+2n=n(n2+3n+2)=n(n2+n+2n+2)=n(n+1)(n+2)

Nhận thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp => n(n+1)(n+2) chia hết cho cả 2 và 3 , mà (2,3)=1 

=> n(n+1)(n+2) chia hết cho 6 hay n3+3n2+2n chia hết cho 6

20 tháng 11 2017

Ta có : n3+3n2+2n=n(n2+3n+2)=n(n2+n+2n+2)=n(n+1)(n+2)

Nhận thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp => n(n+1)(n+2) chia hết cho cả 2 và 3 , mà (2,3)=1 

=> n(n+1)(n+2) chia hết cho 6 hay n3+3n2+2n chia hết cho 6

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

2 tháng 9 2023

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)\)

\(=n\left(2n^2+2n+n+1\right)\)

\(=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n-2+3\right)\)

\(=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta có \(n-1\) ; \(n\) và \(n+1\) là \(3\) số nguyên liên tiếp

\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2\) và \(3\)

Do đó \(\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(\Leftrightarrow2\left(n-1\right)n\left(n+1\right)⋮6\left(1\right)\)

Ta lại có: \(n\) và \(n+1\) là 2 số nguyên liên tiếp \(\Rightarrow n\left(n+1\right)⋮2\)

Do đó: \(3n\left(n+1\right)⋮3\)

\(\Leftrightarrow3n\left(n+1\right)⋮2.3=6\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(2n^3+3n^2+n⋮6\)

2 tháng 9 2023

\(2n^3-3n^2+n\left(\forall n\inℤ\right)\)

\(=n\left(2n^2-3n+1\right)\)

\(=n\left(2n^2-2n-n+1\right)\)

\(=n\left[2n\left(n-1\right)-\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(2n-1\right)\)

\(=n\left(n-1\right)\left(2n+2-3\right)\)

\(=n\left(n-1\right)\left(2n+2\right)-3n\left(n-1\right)\)

\(=2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)\) 

Ta có :

\(n\left(n-1\right)\left(n+1\right)⋮3\) (tích 3 số liên tiếp)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)⋮6\left(\forall n\inℤ\right)\left(1\right)\)

Ta lại có :

\(n\left(n-1\right)⋮2\) (tích 2 số liên tiếp là số chẵn)

\(\Rightarrow3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow2n\left(n-1\right)\left(n+1\right)-3n\left(n-1\right)⋮6\left(\forall n\inℤ\right)\)

\(\Rightarrow2n^3-3n^2+n⋮6\left(\forall n\inℤ\right)\)

30 tháng 6 2017

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

s5.jpg
Trần Thị Thùy Dung
4 tháng 4 2015

Ta có 2n3 + 3n2 + n = n(n + 1)(2n + 1)

Vì n và n + 1 là 2 số nguyên liên tiếp nên n(n + 1) chia hết cho 2 nên n(n + 1)(2n + 1) chia hết cho 2 (1)

Vậy để 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết cho 6 ta cần chứng minh n(n + 1)(2n + 1) chia hết cho 3

Thật vậy

Ta có TH1: n = 3k + 1 (k thuộc Z)

=> (3k + 1)(3k + 2)(6k + 3) chia hết cho 3

         TH2: n = 3k + 2 (k thuộc Z)

=> (3k + 2)(3k + 3)(6k + 5) chia hết cho 3

=> n(n + 1)(2n + 1) chia hết cho 3 (2)

Từ (1) và (2) suy ra 2n3 + 3n2 + n = n(n + 1)(2n + 1) chia hết 2.3 = 6 với mọi số nguyên n

2 tháng 1 2017

bạn àm theo cách đòng dư thức á. Nếu bạn không biết làm thì nhắn xuống dưới mình giải dùm

12 tháng 7 2018
<=> 3n^3 +6n -2n^3 +2n^2- 2n^2 -7n <=> n^3-n <=> n(n^2-1) <=> n(n-1)(n+1) chia hết cho 6 vì là 3 số nguyên liên tiếp
24 tháng 8 2015

2n3 + 3n2 + n = 2n3 + 2n+ n2 + n 

= 2n ( n+1 ) + n ( n+1) = 3n ( n+1)

Vì n là số nguyên nên n và n+1 là 2 số nguyên liên tiếp 

=> 1 trong 2 số n và n+1 có 1 số chẵn

=> n(n+1) chia hết cho 2. Mà 2 và 3 là 2 số nguyên tố cùng nhau 

=> 3.n(n+1) chia hết cho 2.3=6 hay 2n3 + 3n2 +n chia hết cho 6 với mọi số nguyên n

Ta có: n3+3n2+2n 

= n(n2+3n+2) 

= n(n+1)(n+2) 

Ta có n(n+1)(n+2) là tích 3 số nguyên liên tiếp => n(n+1)(n+2) chia hết cho 2,3 => chia hết cho 6

19 tháng 11 2017

em iu anh