so sánh (1-1/4).(1-1/9).(1-1/16)....(1-1/100) với 11/19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A = 3/4 xx 8/9 xx ... xx 99/100`
`= (1xx3)/(2xx2) xx (2xx4)/(3xx3) xx ... xx (9xx11)/(10xx10)`
`= (1xx2xx3xx ... xx 9)/(2xx3xx...xx10) xx (3xx4xx5xx...xx 11)/(2xx3xx4xx...xx 10)`
`= 1/10 xx 11`
`= 11/10`.
Ta có: `11/10 > 1`
`11/19 < 1`.
`=> A > 11/19`.
Ta có :
\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)
ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)
= 3/2^2.8/3^2 ... 99/10^2
= 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2
= 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10
= 1/10 . 11/2 = 11/20 < 11/19
Vậy M < 11/19
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{18}{19}.\frac{19}{20}\)
\(A=\frac{1}{20}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(\Leftrightarrow A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...........\frac{18}{19}.\frac{19}{20}\)
\(\Leftrightarrow A=\frac{1}{20}>\frac{1}{21}\)
\(\Leftrightarrow A>\frac{1}{21}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)................\left(1-\frac{1}{100}\right)\)
\(\Leftrightarrow B=\frac{3}{4}.\frac{8}{9}..................\frac{99}{100}\)
\(B=\frac{1.3}{2^2}.\frac{2.4}{3^2}................\frac{9.11}{50^2}\)
\(B=\frac{11}{50}< \frac{11}{21}\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{80}{81}\cdot\frac{99}{100}\)
\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot...\cdot\frac{8.10}{9.9}\cdot\frac{9.11}{10.10}\)
\(B=\frac{\left(1\cdot2\cdot...\cdot8\cdot9\right).\left(3\cdot4\cdot...\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot9\cdot10\right).\left(2\cdot3\cdot...\cdot9\cdot10\right)}\)
\(B=\frac{1\cdot2\cdot...\cdot8\cdot9}{2\cdot3\cdot...\cdot9\cdot10}\cdot\frac{3\cdot4\cdot...\cdot10\cdot11}{2\cdot3\cdot...\cdot9\cdot10}\)
\(B=\frac{1}{10}\cdot\frac{11}{2}=\frac{11}{20}\)
Vì 20 < 21 nên 11/20 > 11/21
Vậy .....
bạn vào link này nè:https://olm.vn/hoi-dap/question/980572.html
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right).....\left(1-\frac{1}{100}\right)\)
\(=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...............\frac{99}{100}\)
\(=\frac{3.8.15......99}{4.9.16....100}=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right).......\left(9.11\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)......\left(10.10\right)}\)
\(=\frac{\left(1.2.3.....9\right).\left(3.4.5......11\right)}{\left(2.3.4.....10\right).\left(2.3.4.......10\right)}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{21}\)
Vậy B<11/21
Đặt A= ( 1-\(\frac{1}{4}\)). ( 1-\(\frac{1}{9}\)).( 1-\(\frac{1}{16}\))......(1-\(\frac{1}{100}\))
Ta có:A= ( 1-\(\frac{1}{4}\)). ( 1-\(\frac{1}{9}\)).( 1-\(\frac{1}{16}\))......(1-\(\frac{1}{100}\))
A = \(\frac{3}{4}\).\(\frac{8}{9}\).\(\frac{15}{16}\).......\(\frac{99}{100}\)
A= \(\frac{1.3}{2.2}\). \(\frac{2.4}{3.3}\).\(\frac{3.5}{4.4}\).......\(\frac{9.11}{10.10}\)
A=\(\frac{1.2.3....9}{2.3.4....10}\).\(\frac{3.4.5....11}{2.3.4....10}\)
A= \(\frac{1}{10}\). \(\frac{11}{2}\)
A= \(\frac{11}{20}\)
Do 20> 19 => \(\frac{11}{20}\)< \(\frac{11}{19}\). Vậy A< \(\frac{11}{19}\)
Duyệt đi, chúc bạn học giỏi!
cách k ở đâu vậy