Cho a,b>0 và a+b=1.Tìm GTNN của :
K=1/ab + 1/(a^2+b^2).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a;b>0\(\Rightarrow a+b>=2\sqrt{ab}\Rightarrow1>=2\sqrt{ab}\Rightarrow\frac{1}{2}>=\sqrt{ab}\Rightarrow\frac{1}{4}>=ab\)(bđt cosi)
dấu = xảy ra khi a=b=\(\frac{1}{2}\)
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=1+\frac{2}{a}+\frac{1}{a^2}+1+\frac{2}{b}+\frac{1}{b^2}\)
\(=2+\left(\frac{2}{a}+\frac{2}{b}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}\right)>=2+2\sqrt{\frac{2}{a}\cdot\frac{2}{b}}+2\cdot\sqrt{\frac{1}{a^2}\cdot\frac{1}{b^2}}\)(bđt cosi )
dấu = xảy ra khi \(\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=\frac{1}{2};\frac{1}{a^2}=\frac{1}{b^2}\Rightarrow a=b=\frac{1}{2}\)\(\Rightarrow\)dấu = xảy ra khi \(a=b=\frac{1}{2}\)
\(=2+\frac{4}{\sqrt{ab}}+\frac{2}{\sqrt{a^2b^2}}=2+\frac{4}{\sqrt{ab}}+\frac{2}{ab}>=2+\frac{4}{\frac{1}{2}}+\frac{2}{\frac{1}{4}}=2+8+8=18\)
\(\Rightarrow M>=18\Rightarrow\)min M là 18
vậy min M là 18 khi a=b=\(\frac{1}{2}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :
\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\frac{\left(1+\frac{1}{a}\right)^2}{1}+\frac{\left(1+\frac{1}{b}\right)^2}{1}\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}=\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)}{2}\)(1)
Lại có \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)(2)
Từ (1) và (2) => \(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra khi a = b = 1/2
Vậy MinM = 18, đạt được khi a = b = 1/2
Ta có : \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)
Sử dụng BĐT Bunhiacopxki ta có :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}=\frac{1^2}{a^2}+\frac{1^2}{b^2}+\frac{2^2}{2ab}\ge\frac{\left(1+1+2\right)^2}{a^2+b^2+2ab}\)
\(=\frac{4^2}{\left(a+b\right)^2}=\frac{16}{2^2}=\frac{16}{4}=4\)
Dấu = xảy ra khi và chỉ khi \(a=b=1\)
Vậy \(A_{min}=4\)khi \(a=b=1\)
\(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{2}{ab}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{4}{2ab}\)
\(\ge\frac{\left(1+1+2\right)^2}{a^2+2ab+b^2}=\frac{16}{\left(a+b\right)^2}=\frac{16}{4}=4\)
Dấu "=" xảy ra <=> a = b = 1
Có: \(a^2+b^2\ge2ab\Rightarrow a^2+b^2\ge2\)
\(\Rightarrow\left(a+b+1\right)\left(a^2+b^2\right)\ge2\left(a+b+1\right)\)
\(\Rightarrow Q\ge2\left(a+b\right)+\frac{8}{a+b}+2\)
Mà: \(2\left(a+b\right)+\frac{8}{a+b}\ge2\sqrt{2\left(a+b\right).\frac{8}{a+b}}=8\)
\(\Rightarrow Q\ge10\)
Dấu "=" xảy ra <=> a=b=1
\(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\)
Vì \(a,b>0\)\(\Rightarrow\) Áp dụng bất đẳng thức cộng mẫu ta có:
\(\frac{1}{2ab}+\frac{1}{a^2+b^2}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}=\frac{4}{1}=4\)
Vì \(a,b>0\)\(\Rightarrow\)Áp dụng bđt Cô si ta có: \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow2\sqrt{ab}\le1\)\(\Rightarrow\left(2\sqrt{ab}\right)^2\le1\)
\(\Leftrightarrow4ab\le1\)\(\Leftrightarrow2ab\le\frac{1}{2}\)\(\Rightarrow\frac{1}{2ab}\ge2\)
\(\Rightarrow C=\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4+2=6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)
Vậy \(minC=6\)\(\Leftrightarrow x=y=\frac{1}{2}\)
bài này đã có rất nhiều bạn hỏi rồi
Ta có hai bất đẳng thức phụ quen thuộc sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*) ; \(2xy\le\frac{\left(x+y\right)^2}{2}\)(**)
BĐT(*) \(< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng)
BĐT(**)\(< =>x^2+2xy+y^2\ge4xy< =>\left(x-y\right)^2\ge0\)(đúng
Lại có \(C=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}\)
Sử dụng bất đẳng thức phụ (*) : \(C\ge\frac{1}{2ab}+\frac{4}{a^2+2ab+b^2}=\frac{1}{2ab}+\frac{4}{\left(a+b\right)^2}=\frac{1}{2ab}+4\)
Sử dụng bất đẳng thức phụ (**) : \(\frac{1}{2ab}+4\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}+4=2+4=6\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{1}{2}\)
Vậy GTNN của C = 6 đạt được khi a = b = 1/2
Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT
Ta có:
\(a+b\ge2\sqrt{ab}\)
\(\Rightarrow1\ge2\sqrt{ab}\)
\(\Leftrightarrow ab\le\frac{1}{4}\)
Quay lại bài toán ta có:
\(K=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)
\(\ge\frac{1}{\frac{2}{4}}+\frac{4}{\left(a+b\right)^2}=2+4=6\)
Dấu = xảy ra khi \(a=b=\frac{1}{2}\)
khó quá mik chưa học tới lớp 9