Cho a, b \(\in\) N. Chứng tỏ rằng nếu 5a+3b và 13a+8b cùng \(⋮\) 2018 thì a và b cùng \(⋮\) 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
**Có: 5a + 3b chia hết 2015 => 8(5a+3b) chia hết 2015 => 40a + 24b chia hết 2015
Và: 13a + 8b chia hết 2015 => 3(13a + 8b) chia hết 2015 => 39a + 24b chia hết 2015
=> 40a + 24b -(39a +24b) chia hết 2015 => a chia hết 2015
** Có: 5a + 3b chia hết 2015 => 13(5a+3b) = 65a+39b chia hết 2015
và: 13a + 8b chia hết 2015 => 5(13a + 8b) = 65a + 40b chia hết 2015
=> 65a + 40b -(65a +39b) chia hết 2015 => b chia hết 2015
Các bạn xem mình làm có đúng ko ??
Ta có: 5a + 3b chia hết cho 2012 => 13(5a+3b) chia hết cho 2012
=> 65 a + 39b chia hết cho 2012 (1)
Lại có: 13a + 8b chia hết cho 2012 => 5(13a + 8b) chia hết cho 2012
=> 65 a + 40b chia hết cho 2012 (2)
Từ (1)(2) => (65a + 40b) – (65a+39b) chia hết cho 2012
=> b chia hết cho 2012
Tương tự => a chia hết cho 2012
Vậy a, b cũng chia hết cho 2012
bạn làm đúng rồi , Hùng ạ ; còn phần tiếp theo bạn cũng làm tương tự sẽ ra kết quả
ủng hộ nha
Ta có: \(5a+3b⋮2018\Rightarrow65a+39b⋮2018\)
\(13a+8b⋮2018\Rightarrow65a+40b⋮2018\)
Từ 2 điều trên suy ra b chia hết cho 2018
=> 3b chia hết cho 2018 => 5a chia hết cho 2018
Mà ƯCLN(5,2018)=1
=> a chia hết cho 2018