Cho a^2 + b^2 + c^2 = d^2 c/m a+b+c+d là hợp số
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$
$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$
$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$
Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$
Suy ra $a+b+c+d+e \vdots 2$
$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$
suy ra $a+b+c+d+e$ là hợp số
Đề yêu cầu lập thành 1 tỉ lệ thức phải không bạn ??? Mk lm theo hướng đấy nhé !!!
Vì b là trung bình cộng của a và c => \(b=\frac{a+c}{2}\)\(\Rightarrow2b=a+c\)
Ta có \(\frac{1}{c}=\frac{1}{2}\cdot\left(\frac{1}{b}+\frac{1}{d}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\cdot\frac{b+d}{bd}\Rightarrow\frac{1}{c}=\frac{b+d}{2bd}\Rightarrow2bd=c\left(b+d\right)\)
Thay 2b= a+c , ta sẽ có như sau :
\(\left(a+c\right)\cdot d=c\left(b+d\right)\Rightarrow ad+cd=cb+cd\Rightarrow ad=cb\)
Mà b,d khác 0 (b/c)
Nên ta sẽ có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a}{b}\right)\left(\frac{b}{c}\right)\left(\frac{c}{d}\right)\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Vậy ...
a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)
Theo tôi thì bài này nên cho thêm đk là a,b,c,d là số tự nhiên khác 0 nữa thì có lẽ sẽ chuẩn hơn
Lời giải
Đk a,b,c,d là các số tự nhiên lớn hơn 0
Hiển nhiên a,b,c,d>=1
Do đó a+b+c+d>=4>1 (*)
Ta xét 2 trường hợp của d:
TH1: Nếu d là chẵn --> d^2 chẵn, do đó VT phải chẵn, hay a^2+b^2+c^2 chẵn.
Khi đó cả 3 số a,b,c đều phải chẵn, hoặc 2 trong 3 số phải là lẻ. Nếu cả 3 đều chẵn thì a+b+c+d= chẵn +chẵn +chẵn +chẵn chia hết cho 2.
Nếu 2 trong 3 số là lẻ, VD a, b lẻ. Thì a+b+c+d= lẻ +lẻ+chẵn+chẵn= chẵn chia hết cho 2
Kết hợp với điều kiện (*) nên a+b+c+d là hợp số
Th2 d lẻ cũng giải tương tự
Note: Đây là hướng đi nhé