chứng minh 3327+2733chia hết cho 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Các số chia hết cho 2 là: 676; 984; 2050
b) Các số chia hết cho 5 là: 6705; 2050;
c) Các số chia hết cho 3 là: 984; 6705; 3327; 57 663
d) Các số chia hết cho 9 là: 6705; 57 663
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 45=9x5
=> 36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9)
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)
=> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2)
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36^36 - 9^10 chia hết cho 45.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=36^{36}-9^{10}\)
\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)
\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)
(5;9)=1 => A chia hết 45
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đây là dạng toán nâng cao chuyên đề dấu hiệu chia hết cho 5; Cấu trúc thi chuyên thi học sinh giỏi, thi violympic. Hôm nay olm sẽ hướng dẫn các em giải dạng này như sau.
A = 3636 + 7755 - 2
A = \(\overline{..6}\) + (774)13.773 - 2
A = \(\overline{..6}\) + \(\overline{..1}\)13.3 - 2
A = \(\overline{..6}\) + \(\overline{..3}\) - 2
A = \(\overline{..9}\) - 2
A = \(\overline{..7}\) không chia hết cho 5
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 45=9x5
=>36^36-9^10 chia hết cho 9 (1)(vì 36^36 và 9^10 đều chia hết cho9)
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)
=> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2)
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) => 36^36 - 9^10 chia hết cho 45.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(36^{36}=\left(4.9\right)^{36}=4^{36}.9^{36}⋮9\)(1)
\(9^{10}⋮9\)(2)
Từ (1); (2) => \(36^{36}-9^{10}⋮9\) (3)
Ta có : \(36^{36}=\left(6^2\right)^{36}=6^{72}=\overline{.....6}\)
\(9^{10}=\overline{......1}\)
\(\Rightarrow36^{36}-9^{10}=\overline{......6}-\overline{......1}=\overline{......5}⋮5\) (4)
Từ (3) ; (4) \(\Rightarrow36^{36}-9^{10}⋮5;9\) Mà \(\left(5;9\right)=1\) \(\Rightarrow36^{36}-9^{10}⋮45\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)=3^{2014}.11\) chia hết cho 11
Vậy 32016+32015-32014 chia hết cho 11 (đpcm)
--------------------------
Ta có:
- \(36^{36}-9^{10}=4^{36}.9^{36}-9^{10}=9^{10}\left(4^{36}.9^{26}-1\right)=\) chia hết cho 9 (1)
- \(36^{36}-9^{10}=\left(...6\right)-\left(...1\right)=\left(...5\right)\) chia hết cho 5 (2)
Vì 3636 có tận cùng là 6, 910 có tận cùng là 1 => 3636-910 có tận cùng là 5 [ phần này mình chỉ nói thêm thôi nhé ]
Từ (1),(2) và (5;9)=1 =>3636-910 chia hết cho 5.9=45 (đpcm)
9. \(3^{2016}+3^{2015}-3^{2014}=3^{2014}\left(3^2+3-1\right)\)
\(=3^{2014}.11⋮11\)
Vậy \(3^{2016}+3^{2015}-3^{2014}\) chia hết cho 11
Ta có 33^27 + 27^33 = 3^27 . 11^27 + (3^3)^99 = 3^2 . 11.3^25 . 11^26 + 3^99= 99 . 3^25(11^26.3^74)= [36. 3 . 3^25(11^26.3^74)] chia hết cho 36. Vậy 33^37 + 27^33 chia hết cho 36.
à nhầm rồi nha bn