Tính:
7/3.4 + 7/4.6 + 7/5.8 + 7/6.10 + ... + 7/60.118
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2^4 = 16 , 6^7= 279936
9^3=729, 4^6= 4096
Và 16.279936=4478976
729.4096=2985984
=> 4478976:2985984= \(\frac{3}{2}\)
Vậy kết quả của phép tính là \(\frac{3}{2}\)
\(\frac{2^4.6^7}{9^3.4^6}\)
\(=\frac{2^4.\left(2.3\right)^7}{\left(3^2\right)^3.\left(2^2\right)^6}\)
\(=\frac{2^4.2^7.3^7}{3^6.2^{12}}\)
\(=\frac{2^{11}.3^7}{3^6.2^{12}}\)
\(=\frac{3}{2}\)
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
b)
\(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{97.99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
c)
\(\frac{7}{3.4}+\frac{7}{4.5}+.....+\frac{7}{60.61}\)
\(=7\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{60}-\frac{1}{61}\right)\)
\(=7\left(\frac{1}{3}-\frac{1}{61}\right)\)
\(=\frac{406}{183}\)
d)
\(\frac{6}{2.4}+\frac{6}{4.6}+....+\frac{1}{72.74}\)
\(=3\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+.....+\frac{1}{72}-\frac{1}{74}\right)\)
\(=3\left(\frac{1}{2}-\frac{1}{74}\right)\)
=57/37
\(\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{4}{7}+\dfrac{1}{7}\right)=\dfrac{1}{3}\times1=\dfrac{1}{3}\)
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{7}{5}\cdot\dfrac{8}{19}+\dfrac{7}{5}\cdot\dfrac{12}{19}-\dfrac{7}{5}\cdot\dfrac{1}{18}\)
`=`\(\dfrac{7}{5}\cdot\left(\dfrac{8}{19}+\dfrac{12}{19}-\dfrac{1}{18}\right)\)
`=`\(\dfrac{7}{5}\cdot\left(\dfrac{20}{19}-\dfrac{1}{18}\right)\)
`=`\(\dfrac{7}{5}\cdot\dfrac{341}{342}=\dfrac{2387}{1710}\)
a) = 2(1-1/2+1/2-1/3+...+1/19-1/20)
= 2(1-1/20)
= 2.19/20
= 19/10
b) = 7(1/2-1/3+1/3-1/4+...+1/6-1/7)
= 7(1/2 - 1/7)
= 7.5/14
= 5/2
c) = 1/2-1/5+1/5-1/8+...+1/14-1/17
= 1/2 - 1/17
= 15/34
Chúc bạn học tốt nhé
a)2/1.2+2/2.3+....+2/19.20
=2(1/1.2+1/2.3+....+1/19.20)
=2(1-1/2+1/2-1/3+.....-1/20)
=2(1-1/20)
2(19/20)=38/20=19/10
b)7/2.3+7/3.4+7/4.5+7/5.6+7/6.7
7(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7)
7(1/2-1/3+1/3-1/4+.....-1/7)
7(1/2-1/7)
7(7/14-2/14)=7.5/14=35/14=5/2
c)3/2.5+3/5.8+3/8.11+3/11.14+3/14.17
1/2-1/5+1/5-1/8+......+1/14-1/17
1/2-1/17=17/34-2/34=15/34
A =\(\dfrac{7}{3.4}\) + \(\dfrac{7}{4.6}\) + \(\dfrac{7}{5.8}\) + \(\dfrac{7}{6.10}\)+...+\(\dfrac{7}{60.118}\)
A = \(\dfrac{2.7}{2.3.4}\) + \(\dfrac{2.7}{2.4.6}\)+\(\dfrac{2.7}{2.5.8}\) + \(\dfrac{2.7}{2.6.10}\)+...+\(\dfrac{2.7}{2.60.118}\)
A = 7.(\(\dfrac{2}{6.4}\)+\(\dfrac{2}{8.6}\)+\(\dfrac{2}{10.8}\)+\(\dfrac{2}{12.10}\)+...+\(\dfrac{2}{120.118}\))
A = 7.(\(\dfrac{2}{4.6}\)+\(\dfrac{2}{6.8}\)+\(\dfrac{2}{8.10}\)+\(\dfrac{2}{10.12}\)+...+\(\dfrac{2}{118.120}\))
A = 7.(\(\dfrac{1}{4}-\dfrac{1}{6}\)+ \(\dfrac{1}{6}-\dfrac{1}{8}\) +\(\dfrac{1}{8}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{12}\) +...+ \(\dfrac{1}{118}\) - \(\dfrac{1}{120}\))
A = 7.( \(\dfrac{1}{4}\) - \(\dfrac{1}{120}\))
A = 7.\(\dfrac{29}{120}\)
A = \(\dfrac{203}{120}\)