\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
ĐK x >= -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ĐKXĐ: 3x^2-x+2>=0
=>x thuộc R
2: ĐKXĐ: x>=0 và căn x-1<>0 và 2-căn x<>0 và 2x+1>0 và x<>0
=>x>0 và x<>1 và x<>4
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(\left\{{}\begin{matrix}16-x^2\ge0\\2x+1>0\\x^2-8x+14\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}< x\le4-\sqrt{2}\)
xác định \(< =>\left\{{}\begin{matrix}\sqrt{16-x^2}\ge0\\\sqrt{2x+1}>0\\\sqrt{x^2-8x+14}\ge0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4_{ }+\sqrt{2}\end{matrix}\right.\\\end{matrix}\right.\)\(< =>-\dfrac{1}{2}< x\le4-\sqrt{2}\)
Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
\(=-1+\frac{1}{2\sqrt{x}-1}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\frac{-2\sqrt{x}+1+1+2\text{x}\sqrt{x}-x}{2\sqrt{x}-1}\)
\(=\frac{-2\sqrt{x}+2+2\text{x}\sqrt{x}-x}{2\sqrt{x}-1}\)
tick cho mình nha
Q=\(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\) điều kiện x>=0
=\(\frac{x-1+x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
ta thấy cả tử và mẫu đề >=0=> Q>=0
dấu = xảy ra khi x=0
=> Q=0 khi x=0
voi x>=-1 binh phuong hai ve ta duoc x^2 +2x +1 = x+1 hay x^2 +x=0 ...x(x+1)=0 den day la ra kqua