K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 4 2019

a/ \(cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{5}}{3}\)

\(tana=\frac{sina}{cosa}=-\frac{2\sqrt{5}}{5}\) ; \(cota=\frac{1}{tana}=-\frac{\sqrt{5}}{2}\)

b/ \(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}\)

\(\Rightarrow cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{\sqrt{3}}{3}\); \(sina=-\sqrt{1-cos^2a}=-\frac{\sqrt{6}}{3}\)

\(cota=\frac{1}{tana}=\frac{\sqrt{2}}{2}\)

c/ \(sina=\sqrt{1-cos^2a}=\frac{\sqrt{5}}{5}\); \(tana=\frac{sina}{cosa}=\frac{1}{2}\); \(cota=\frac{1}{tana}=2\)

d/ \(sina=\sqrt{1-cos^2a}=\frac{\sqrt{209}}{15}\); \(tana=\frac{sina}{cosa}=\frac{\sqrt{209}}{4}\); \(cota=\frac{1}{tana}=\frac{4}{\sqrt{209}}\)

e/ \(\frac{1}{sin^2a}=1+cot^2a\Rightarrow sin^2a=\frac{1}{1+cot^2a}\Rightarrow sina=\frac{-1}{\sqrt{1+cot^2a}}\)

\(\Rightarrow sina=-\frac{\sqrt{10}}{10}\); \(cosa=\sqrt{1-sin^2a}=\frac{3\sqrt{10}}{10}\); \(cota=\frac{1}{tana}=-\frac{1}{3}\)

f/ \(cosa=-\frac{1}{\sqrt{1+tan^2a}}=-\frac{\sqrt{5}}{5}\); \(sina=tana.cosa=\frac{2\sqrt{5}}{5}\); \(cota=\frac{1}{tana}=-\frac{1}{2}\)

g/ Đề sai, trong khoảng \(\pi< a< \frac{3\pi}{2}\) thì \(\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) nên \(tana>0\)

\(\Rightarrow tana\) không thể nhận giá trị âm, ko có góc \(\alpha\)

NV
25 tháng 4 2019

\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)

\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)

\(cos2a=2cos^2a-1=-\frac{1}{2}\)

\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)

\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)

\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).

10 tháng 5 2017

b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).

30 tháng 3 2017

Hỏi đáp Toán

NV
29 tháng 3 2019

Do \(\pi< a< \frac{3\pi}{2}\Rightarrow cosa< 0\)

\(cosa=-\sqrt{1-sin^2a}=-\sqrt{1-0,6^2}=-\frac{4}{5}\)

\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)

\(cota=\frac{1}{tana}=-\frac{4}{3}\)

NV
10 tháng 6 2020

\(tana+cota=2\Leftrightarrow\frac{sina}{cosa}+\frac{cosa}{sina}=2\)

\(\Leftrightarrow\frac{sin^2a+cos^2a}{sina.cosa}=2\)

\(\Leftrightarrow1=2sina.cosa\)

\(\Leftrightarrow sin2a=1\)

10 tháng 5 2017

Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(tan\alpha< 0,cot\alpha< 0;cos\alpha< 0\).
Vì vậy: \(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{7}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{3}{4}:\dfrac{-\sqrt{7}}{4}=\dfrac{-3}{\sqrt{7}}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{-\sqrt{7}}{3}\).
\(A=\dfrac{2tan\alpha-3cot\alpha}{cos\alpha+tan\alpha}\)\(=\dfrac{2.\dfrac{-3}{\sqrt{7}}-3.\dfrac{-\sqrt{7}}{3}}{\dfrac{-\sqrt{7}}{4}+\dfrac{-3}{\sqrt{7}}}\)
\(=\dfrac{\dfrac{-6}{\sqrt{7}}+\sqrt{7}}{\dfrac{-7-12}{4\sqrt{7}}}\)\(=\dfrac{\dfrac{-6+7}{\sqrt{7}}.4\sqrt{7}}{-19}\)\(=\dfrac{\dfrac{1}{\sqrt{7}}.4\sqrt{7}}{-19}=-\dfrac{4}{19}\).

10 tháng 5 2017

b) \(\dfrac{cos^2\alpha+cot^2\alpha}{tan\alpha-cot\alpha}=\dfrac{\left(-\dfrac{\sqrt{7}}{4}\right)^2+\left(\dfrac{-\sqrt{7}}{3}\right)^2}{\dfrac{-3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{\dfrac{7}{16}+\dfrac{7}{9}}{\dfrac{-9+7}{3\sqrt{7}}}=\dfrac{\dfrac{175}{144}}{\dfrac{-2}{3\sqrt{7}}}=\dfrac{-175}{96\sqrt{7}}\).

18 tháng 5 2020

Ta có: Sin a = \(\frac{-3}{\sqrt{10}}\)

Cách làm tự giải.

Chúc bạn học tốt!