tính
B=(1+\(\frac{1}{2}\)).(1+\(\frac{1}{3}\)).(1+\(\frac{1}{4}\))...(1+\(\frac{1}{99}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
a ) Tách số 19 ra 19 số 1
Nhóm ở trên tử , mỗi số hạng cộng với 1
=> ...
b ) Tách số 99 ở mẫu thành 99 số 1
Nhóm ở dưới mẫu , mỗi số hạng cộng với 1
=> ...
Chúc học tốt !!!
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)++...+\left(1+\frac{98}{2}\right)1}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{100\times\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)}\)
\(=\frac{1}{100}\)
\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)
\(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)
Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)
\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)
\(A=\frac{B}{6}=\frac{100}{2}=50\)
Vậy \(A=50\)
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
Phân tích mẫu ta có
99/1 + 98/2 +...+1/99 = (98/2 + 1) + (97/3 + 1) +...+(1/99 + 1) +99/1 - 99
( cộng 1 vào mỗi phân số trừ 99/1 do đó phải trừ đi 99 để vẵn được đẳng thức đó)
= 100/2 +100/3 +...+100/99 = 100. (1/2 +1/3 +...+1/99)
Do đó B = [100. (1/2 +1/3 +...+1/99)]/(1/2 +1/3 +..1/99) =100
\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}}\)
\(B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}\)
\(B=\frac{1}{100}\)
B =\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
B =\(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}\)
B =\(\frac{1}{2}.100\)
B =\(\frac{100}{2}=50\)
Ta có: B = (1 +\(\frac{1}{2}\)) . (1 + \(\frac{1}{3}\)). ... . (1 + \(\frac{1}{99}\))
=> B = \(\frac{3}{2}\). \(\frac{4}{3}\). ... .\(\frac{100}{99}\)
=> B = \(\frac{3.4.....100}{2.3.....99}\) = \(\frac{100}{2}\)= 50.
Vậy: B = 50.