cho a^2 + b^2 < 2 . Chứng minh a+b<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^2+b^2\ge ab+1\)
\(2\sqrt{a^2b^2}\ge ab+1\)
\(ab\ge1\)
Dấu = xảy ra \(< =>a=b=\sqrt{1}=1\)
Bđt ngược dấu rồi thì phải
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
\(\frac{a}{b+c}>\frac{a}{a+b+c}\) (do a > 0)
Tương tự: \(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
Từ 3 bất đẳng thức trên suy ra:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Ta sẽ chứng minh:
\(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Thât vậy, do a, b, c là các cạnh của tam giác nên bất đẳng thức trên tương đương với
\(a\left(a+b+c\right)< 2a\left(b+c\right)\)
\(\Leftrightarrow a^2+ab+ac< 2ab+2ac\)
\(\Leftrightarrow a\left(a-b-c\right)< 0\)
Bất đẳng thức này đúng vì a>0 và a < b + c (vì trong tam giác, tổng hai cạnh lớn hơn cạnh thứ ba).
Vậy ta có: \(\frac{a}{b+c}< \frac{2a}{a+b+c}\)
Tương tự, \(\frac{b}{a+c}< \frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{2c}{a+b+c}\)
Cộng 3 bất đẳng thức trên suy ra:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Vậy bài toán đã được chứng minh.
Mình chỉ chứng minh được bé hơn 2 thôi nhe
Theo bất đẳng thức tam giác thì b+c>a => \(\frac{a}{b+c}< \frac{a}{a}\left(=1\right)\)
Tương tự ta cũng có
\(\frac{b}{a+c}< 1\)
\(\frac{c}{a+b}< 1\)
=> \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 3\)
2(ab+bc+ca)=2ab+2bc+2ca=(ab+bc)+(bc+ca)+(ca+ab)=b(a+c)+c(a+b)+a(b+c)
mà theo bất đẳng thức tam giác a+c>b=>(a+c)b>b2 (1)
tương tự ta cũng có c(a+b)>c2 (2);a(b+c)>a2(3)
cộng theo từng vế của (1);(2);(3) đc đpcm
\(a+b+c\le1\) hoặc \(a+b+c=1\) nhá
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\dfrac{9}{\left(a+b+c\right)^2}=9\)
Đẳng thức xảy ra khi ..........
a^2+b^2<2
=>a^2<2-b^2
=>\(a< \sqrt{2-b^2}< =2-b\)
=>a+b<=2