K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

x^2 . x  . (8 - 6) - 2 = 0

x^3  . 2 - 2 = 0

x^3 . 2 = 0 + 2

x^3 . 2 = 2

x^3 = 2 : 2

x^3 = 1

x^3 = 1^3

\(\Rightarrow\)x = 1

2 tháng 5 2017

\(8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(8x+2\right)=0\)

Làm tiếp nha

15 tháng 7 2016

a)\(x^2+6x+5=0\)

=>\(x^2+x+5x+5=0\)

=>\(x\left(x+1\right)+5\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)

Vậy x=-1 hoặc x=-5

b)\(2x^2+6x+4=0\)

=>\(2x^2+2x+4x+4=0\)

=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(2x+4\right)=0\)

=>\(\left(x+1\right)2\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)

Vậy x=-1 hoặc x=-2

15 tháng 7 2016

(x^2+6x+9)-4=0

(x+3)^2=4

x+3=2

x=-1

25 tháng 8 2015

 

a) x^2 + 4y^2 + 6x - 12y + 18 = 0

<=>x2+6x+9+4y2-12y+9=0

<=>(x+3)2+(2y-3)2=0

<=>x+3=0 và 2y-3=0

<=>x=-3 và y=3/2

 

b) 5x^2 +9y^2 - 12xy - 6x +9 = 0

<=>x2-6x+9+4x2-12xy+9y2=0

<=>(x-3)2+(2x-3y)2=0

<=>x-3=0 và 2x-3y=0

<=>x=3 và 2.3-3y=0

<=>x=3 và y=2

  

30 tháng 10 2019

a) \(x^2-4x-7=0\)

Ta có: \(\Delta=4^2+4.28=128,\sqrt{\Delta}=\sqrt{128}\)

pt có 2 nghiệm:

\(x_1=\frac{4+\sqrt{128}}{2}\);\(x_2=\frac{4-\sqrt{128}}{2}\)

30 tháng 10 2019

b) \(x^2-x-11=0\)

Ta có: \(\Delta=1^2+4.11=45,\sqrt{\Delta}=\sqrt{45}\)

pt có 2 nghiệm:

\(x_1=\frac{1+\sqrt{45}}{2}\)\(x_2=\frac{1-\sqrt{45}}{2}\)

8 tháng 8 2016

d) <=>x2-5x-x+5=0

<=>x(x-5)-(x-5)=0

<=>(x-5)(x-1)=0

<=>x=5 hoặc x=1

9 tháng 8 2016

thank nha

27 tháng 9 2021

a. x2 - 6x = -9

<=> x2 - 6x + 9 = 0

<=> (x - 3)2 = 0

<=> x - 3 = 0

<=> x = 3

b. 2(x + 3) - x2 + 3x = 0

<=> 2(x + 3) - x(x + 3) = 0

<=> (2 - x)(x + 3) = 0

<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\) 

27 tháng 9 2021

Phần b bị sai rồi kìa nếu đặt dấu trừ trc thì trong ngoặc đổi dấu 

15 tháng 8 2017

\(2x^4-6x^3+x^2+6x-3=0\)

\(\Leftrightarrow2x^4-2x^3-4x^3+4x^2-3x^2+3x+3x-3=0\)

\(\Leftrightarrow2x^3\left(x-1\right)-4x^2\left(x-1\right)-3x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^3-4x^2-3x+3\right)=0\)

20 tháng 8 2017

Đã có đáp án:

2x^4-6x^3+x^2+6x-3=0

2x^4-6x^3-3x^2-2x^2-6x-3=0

2x^2(x^2-1)-6x(x^2-1)+3(x^2-1)=0

(x^2-1)(2x^2-6x+3)=0

=> {  x^2-1=0 =>x=-1;1

 Giả phương trình :(*) 2x^2-6x+3=0

                              4x^2-12x-6=0

                               (2x)^2-2.2x.3-3=0

                               (2x-3)^2- (√3)^2=0

                              ( 2x-3)^2=(√3)^2

                              => 2x-3=-√3 => 2x= 3-√3 => x=(3-√3)/2

                                   2x-3=√3  => 2x=√3+3 => x=(√3+3)/2

                    Vậy x....

11 tháng 11 2021

2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
    6x(x-4)=0
TH1: 6x=0         TH2: x-4=0
           x=0                     x=4
Vậy x\(\in\){0;4}

11 tháng 11 2021

2. a. \(4x\left(x-1\right)-6x+6\)

\(=4x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(4x-6\right)\left(x-1\right)\)

3. a. \(6x^2-24x=0\)

\(\Leftrightarrow6x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

13 tháng 12 2021

c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

NV
15 tháng 1 2024

\(\Leftrightarrow x^6-2\left(x^3+3x^2+3x+1\right)-15< 0\)

\(\Leftrightarrow x^6-2\left(x+1\right)^3-15< 0\)

\(\Leftrightarrow x^6< 2\left(x+1\right)^3+15\) (1)

- Với \(x\le-2\Rightarrow x+1\le-1\Rightarrow2\left(x+1\right)^3+15\le13\)

Trong khi đó \(x^6\ge2^6=32>13\) (ktm(1))

\(\Rightarrow\) Không tồn tại \(x\le-2\) thỏa mãn BPT (2)

- Với \(x\ge3\Rightarrow x^2\ge3x=2x+x\ge2x+3>2x+2\)

\(\Rightarrow x^2>2\left(x+1\right)\Rightarrow x^6>2^3.\left(x+1\right)^3=8\left(x+1\right)^3\) (3)

(1);(3) \(\Rightarrow2\left(x+1\right)^3+15>8\left(x+1\right)^3\)

\(\Rightarrow6\left(x+1\right)^3< 15\Rightarrow\left(x+1\right)^3< \dfrac{5}{2}< 8\)

\(\Rightarrow x+1< 2\Rightarrow x< 1\) (mâu thuẫn giả thiết \(x\ge3\))

\(\Rightarrow\) Không tồn tại \(x\ge3\) thỏa mãn BPT (4)

Từ (2);(4) \(\Rightarrow\) các giá trị nguyên của x nếu có thỏa mãn BPT chúng sẽ thuộc \(-2< x< 3\)

\(\Rightarrow x=\left\{-1;0;1;2\right\}\)

Thay vào BPT ban đầu thử thấy đều thỏa mãn

Vậy \(x=\left\{-1;0;1;2\right\}\)