Tìm x
8x2 -6x-2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(x^2+6x+5=0\)
=>\(x^2+x+5x+5=0\)
=>\(x\left(x+1\right)+5\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}}\)
Vậy x=-1 hoặc x=-5
b)\(2x^2+6x+4=0\)
=>\(2x^2+2x+4x+4=0\)
=>\(2x\left(x+1\right)+4\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(2x+4\right)=0\)
=>\(\left(x+1\right)2\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)
Vậy x=-1 hoặc x=-2
a) x^2 + 4y^2 + 6x - 12y + 18 = 0
<=>x2+6x+9+4y2-12y+9=0
<=>(x+3)2+(2y-3)2=0
<=>x+3=0 và 2y-3=0
<=>x=-3 và y=3/2
b) 5x^2 +9y^2 - 12xy - 6x +9 = 0
<=>x2-6x+9+4x2-12xy+9y2=0
<=>(x-3)2+(2x-3y)2=0
<=>x-3=0 và 2x-3y=0
<=>x=3 và 2.3-3y=0
<=>x=3 và y=2
a) \(x^2-4x-7=0\)
Ta có: \(\Delta=4^2+4.28=128,\sqrt{\Delta}=\sqrt{128}\)
pt có 2 nghiệm:
\(x_1=\frac{4+\sqrt{128}}{2}\);\(x_2=\frac{4-\sqrt{128}}{2}\)
a. x2 - 6x = -9
<=> x2 - 6x + 9 = 0
<=> (x - 3)2 = 0
<=> x - 3 = 0
<=> x = 3
b. 2(x + 3) - x2 + 3x = 0
<=> 2(x + 3) - x(x + 3) = 0
<=> (2 - x)(x + 3) = 0
<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(2x^4-6x^3+x^2+6x-3=0\)
\(\Leftrightarrow2x^4-2x^3-4x^3+4x^2-3x^2+3x+3x-3=0\)
\(\Leftrightarrow2x^3\left(x-1\right)-4x^2\left(x-1\right)-3x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x^3-4x^2-3x+3\right)=0\)
Đã có đáp án:
2x^4-6x^3+x^2+6x-3=0
2x^4-6x^3-3x^2-2x^2-6x-3=0
2x^2(x^2-1)-6x(x^2-1)+3(x^2-1)=0
(x^2-1)(2x^2-6x+3)=0
=> { x^2-1=0 =>x=-1;1
Giả phương trình :(*) 2x^2-6x+3=0
4x^2-12x-6=0
(2x)^2-2.2x.3-3=0
(2x-3)^2- (√3)^2=0
( 2x-3)^2=(√3)^2
=> 2x-3=-√3 => 2x= 3-√3 => x=(3-√3)/2
2x-3=√3 => 2x=√3+3 => x=(√3+3)/2
Vậy x....
2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
6x(x-4)=0
TH1: 6x=0 TH2: x-4=0
x=0 x=4
Vậy x\(\in\){0;4}
2. a. \(4x\left(x-1\right)-6x+6\)
\(=4x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(4x-6\right)\left(x-1\right)\)
3. a. \(6x^2-24x=0\)
\(\Leftrightarrow6x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow x^6-2\left(x^3+3x^2+3x+1\right)-15< 0\)
\(\Leftrightarrow x^6-2\left(x+1\right)^3-15< 0\)
\(\Leftrightarrow x^6< 2\left(x+1\right)^3+15\) (1)
- Với \(x\le-2\Rightarrow x+1\le-1\Rightarrow2\left(x+1\right)^3+15\le13\)
Trong khi đó \(x^6\ge2^6=32>13\) (ktm(1))
\(\Rightarrow\) Không tồn tại \(x\le-2\) thỏa mãn BPT (2)
- Với \(x\ge3\Rightarrow x^2\ge3x=2x+x\ge2x+3>2x+2\)
\(\Rightarrow x^2>2\left(x+1\right)\Rightarrow x^6>2^3.\left(x+1\right)^3=8\left(x+1\right)^3\) (3)
(1);(3) \(\Rightarrow2\left(x+1\right)^3+15>8\left(x+1\right)^3\)
\(\Rightarrow6\left(x+1\right)^3< 15\Rightarrow\left(x+1\right)^3< \dfrac{5}{2}< 8\)
\(\Rightarrow x+1< 2\Rightarrow x< 1\) (mâu thuẫn giả thiết \(x\ge3\))
\(\Rightarrow\) Không tồn tại \(x\ge3\) thỏa mãn BPT (4)
Từ (2);(4) \(\Rightarrow\) các giá trị nguyên của x nếu có thỏa mãn BPT chúng sẽ thuộc \(-2< x< 3\)
\(\Rightarrow x=\left\{-1;0;1;2\right\}\)
Thay vào BPT ban đầu thử thấy đều thỏa mãn
Vậy \(x=\left\{-1;0;1;2\right\}\)
x^2 . x . (8 - 6) - 2 = 0
x^3 . 2 - 2 = 0
x^3 . 2 = 0 + 2
x^3 . 2 = 2
x^3 = 2 : 2
x^3 = 1
x^3 = 1^3
\(\Rightarrow\)x = 1
\(8x^2-6x-2=0\)
\(\Leftrightarrow8x^2-8x+2x-2=0\)
\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+2\right)=0\)
Làm tiếp nha