K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>2x^2-5x-2x^2+3x+3=19

=>-2x=16

=>x=-8

30 tháng 8 2017

x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1 
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x) 
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1] 
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0 
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7] 
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7 
Vay GTLN A=7 khi x=2 
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4] 
GTLN B= 1/4 khi x=1/2 
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4) 
= -2[(x-1/2)^2 +9/4] 
GTLN N= -9/2 khi x=1/2

2 tháng 8 2018

(x + 2)(x - 2) - (x - 2)(x + 5)

= (x - 2)(x + 2 - x - 5)

= (x - 2)-3

= -3x + 6

b) 2x(3x2y + 4x2y - 3)

= 2x(7x2y - 3)

= 14x3y - 6x

2 tháng 8 2018

bạn giải hết đc ko ạ

21 tháng 9 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 - 22 = 0

<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0

<=> ( x - 5 )( x - 1 ) = 0

<=> x = 5 hoặc x = 1

b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22

<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22

<=> 4x2 + 12x + 9 - 4x2 + 1 = 22

<=> 12x + 10 = 22

<=> 12x = 12

<=> x = 1

c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16

<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16

<=> 16x2 - 9 - 16x2 + 40x - 25 = 16

<=> 40x - 34 = 16

<=> 40x = 50

<=> x = 50/40 = 5/4

d) x3 - 9x2 + 27x - 27 = -8

<=> ( x - 3 )3 = -8

<=> ( x - 3 )3 = (-2)3

<=> x - 3 = -2

<=> x = 1 

e) ( x + 1 )3 - x2( x + 3 ) = 2

<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2

<=> 3x + 1 = 2

<=> 3x = 1

<=> x = 1/3

f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5

<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5

<=> x3 + 12x - 8 - x3 + x = 5

<=> 13x - 8 = 5

<=> 13x = 13

<=> x = 1

21 tháng 9 2020

a) \(\left(x-3\right)^2-4=0\)

=> \(\left(x-3\right)^2-2^2=0\)

=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)

=> \(\left(x-5\right)\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)

=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)

=> \(4x^2+12x+9-4x^2+1=22\)

=> \(12x+9+1=22\)

=> \(12x+10=22\)

=> 12x = 12

=> x = 1

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)

=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)

=> \(16x^2-9-16x^2+40x-25=16\)

=> \(-9+40x-25=16\)

=> \(40x=16+25-\left(-9\right)=16+25+9=50\)

=> x = 50/40 = 5/4

d) \(x^3-9x^2+27x-27=-8\)

=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)

=> \(\left(x-3\right)^3=-8\)

=> \(\left(x-3\right)^3=\left(-2\right)^3\)

=> x - 3  = -2 => x = 1

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)

=> \(3x+1=2\)

=> \(3x=1\)=> x = 1/3

f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)

=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)

=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)

=> \(\left(12x+x\right)-8=5\)

=> 13x  = 13

=> x = 1

3 tháng 8 2018

a) (x+2)(x-2) - (x-2)(x+5 )

= (x-2) (x+2 - x-5)

= -3 (x-2)

c) \(\left(3x+1\right)^2\) - \(\left(1-2x\right)^2\)

= (3x+1 - 1 +2x) (3x+1 +1-2x)

= 5x (x +2)

d) \(x^2\) - 4 - \(\left(x+2\right)^2\)

= (\(x^2\) - 4 ) - ( x+2) (x+2)

= (x-2) (x+2) - (x+2) (x+2)

= (x+2) (x-2 - x-2)

= -4 (x+2)

e: \(=x^2-16-2x^2-6x+x^2+6x+9=-7\)

b: \(=\left(6x+1-6x+1\right)^2=2^2=4\)

18 tháng 10 2020

Bài 2 : 

a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)

b, \(5x\left(x-2020\right)-x+2020=0\)

\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)

\(\Leftrightarrow x=\frac{1}{5};2020\)

c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)

\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)

\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow x=-3;-\frac{2}{3}\)

18 tháng 10 2020

a,x2-4x=0

= x.(x-4)=0

=> x=0 hoặc x-4=0

=>x=0 hoặc x=4

4, \(x^3-8+2x^2-4x=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)^2=0\Leftrightarrow x=\pm2\)

5, \(x^2\left(x-3\right)+18-6x=0\Leftrightarrow x^2\left(x-3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-6\right)\left(x-3\right)=0\Leftrightarrow x=\pm\sqrt{6};x=3\)

26 tháng 4 2023

\(A\left(x\right)=\dfrac{1}{4}x^3+\dfrac{11}{3}x^2-6x-\dfrac{2}{3}x^2+\dfrac{7}{4}x^3+2x+3\)
\(=\left(\dfrac{1}{4}x^3+\dfrac{7}{4}x^3\right)+\left(\dfrac{11}{3}x^2-\dfrac{2}{3}x^2\right)-\left(6x-2x\right)+3\)
\(=2x^3+3x^2-4x+3\)