Cho tam giác ABC nội tiếp (O;R) có BC=2R và AB < AC. Tiếp tuyến tại B, C của (O) cắt tiếp tuyến tại A lần lượt tại D, E. F là trung điểm của DE. M là giao của FC với (O). CMR : \(\widehat{CED}=2\widehat{AMB}\) và tính MC.BF theo R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác BDEA có
\(\widehat{BDA}=\widehat{BEA}=90^0\)
nên BDEA là tứ giác nội tiếp
hay B,D,E,A cùng thuộc 1 đường tròn
a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{EAC}\) chung
Do đó: ΔAEC đồng dạng với ΔADB
=>\(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
=>\(AE\cdot AB=AD\cdot AC\)
Xét ΔABC có
CE,BD là đường cao
CE cắt BD tại H
DO đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại M
Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp
=>\(\widehat{EDH}=\widehat{EAH}\)
=>\(\widehat{EDB}=\widehat{BAH}=90^0-\widehat{ABC}\left(1\right)\)
Xét tứ giác HDCM có
\(\widehat{HDC}+\widehat{HMC}=90^0+90^0=180^0\)
=>HDCM là tứ giác nội tiếp
=>\(\widehat{HDM}=\widehat{HCM}\)
=>\(\widehat{MDB}=\widehat{ECB}=90^0-\widehat{ABC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{EDB}=\widehat{MDB}\)
=>DB là phân giác của \(\widehat{EDM}\)
OCEA nội tiếp
=>góc CED=góc CEA=180 độ-góc AOC=góc AOB=sđ cung AB
=>góc CED=2*góc AMB
c: F là trung điểm của DE và O là trung điểm của BC
=>OF//BI//CE
=>OF vuông góc BC
=>góc FCB=góc MCB
FO vuông góc BC
=>góc FOB=90 độ
góc BMC=1/2*sđ cung CB=90 độ
=>góc BMC=góc FOB
=>ΔOBF đồng dạng với ΔMCB
=>OB/MC=BF/BC
=>OB*BC=BF*MC=2*R^2