so sánh m và n:
6m-5>6n-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^m=a^n\)
\(\Rightarrow a^m-a^n=0\)
\(\Rightarrow a^n.\left(a^{m-n}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a^n=0\\a^{m-n}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\a^{m-n}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\m-n=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\m=0+n\end{matrix}\right.\Rightarrow m=n.\)
Vậy nếu \(m=n\) thì \(a^m=a^n\left(a\in Q,m;n\in N\right).\)
b) \(a^m>a^n\)
\(\Rightarrow a^m-a^n>0\)
\(\Rightarrow a^n.\left(a^{m-n}-1\right)>0\)
\(\Rightarrow a^n\) và \(a^{m-n}-1\) cùng dấu.
Mà \(a>0\Rightarrow a^n>0\)
\(\Rightarrow a^{m-n}-1>0\)
\(\Rightarrow a^{m-n}>1\)
\(\Rightarrow m-n>0\)
\(\Rightarrow m>n\left(đpcm\right).\)
Chúc bạn học tốt!
a. Ta có: m<n
<=> 2m<2n (nhân cả hai vế với 2)
<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm
b. Ta có: m<n
<=> m-2<n-2 (cộng cả hai vế với -2)
<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm
c. Ta có: m<n
<=> -6m>-6n (nhân cả hai vế với -6)
<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm
d. Ta có: m<n
<=> 4m<4n (nhân cả hai vế với 4)
<=> 4m+1<4n+1 (cộng cả hai vế với 1)
mà 4n+1<4n+5
=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)
a) -8m + 2
Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:
-8m + 2 < - 8n + 2
b) 6n - 1 với 6m + 2
6n - 1 < 6m + 2
=>6m>6n
=>m>n
sao ngắn rk