K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>6m>6n

=>m>n

25 tháng 4 2023

sao ngắn rk

 

27 tháng 9 2019

a) \(a^m=a^n\)

\(\Rightarrow a^m-a^n=0\)

\(\Rightarrow a^n.\left(a^{m-n}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a^n=0\\a^{m-n}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\a^{m-n}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\m-n=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\m=0+n\end{matrix}\right.\Rightarrow m=n.\)

Vậy nếu \(m=n\) thì \(a^m=a^n\left(a\in Q,m;n\in N\right).\)

b) \(a^m>a^n\)

\(\Rightarrow a^m-a^n>0\)

\(\Rightarrow a^n.\left(a^{m-n}-1\right)>0\)

\(\Rightarrow a^n\)\(a^{m-n}-1\) cùng dấu.

\(a>0\Rightarrow a^n>0\)

\(\Rightarrow a^{m-n}-1>0\)

\(\Rightarrow a^{m-n}>1\)

\(\Rightarrow m-n>0\)

\(\Rightarrow m>n\left(đpcm\right).\)

Chúc bạn học tốt!

Thank bn nhìu

4 tháng 5 2017

a. Ta có: m<n

<=> 2m<2n (nhân cả hai vế với 2)

<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm

b. Ta có: m<n

<=> m-2<n-2 (cộng cả hai vế với -2)

<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

c. Ta có: m<n

<=> -6m>-6n (nhân cả hai vế với -6)

<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm

d. Ta có: m<n

<=> 4m<4n (nhân cả hai vế với 4)

<=> 4m+1<4n+1 (cộng cả hai vế với 1)

mà 4n+1<4n+5

=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)

5 tháng 5 2019

a) -8m + 2
 Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:

-8m + 2 < - 8n + 2

b) 6n - 1 với 6m + 2

6n - 1 < 6m + 2

25n=(25)n=32n

52n=(52)n=25n

32n>25n=>25n>52n

8 tháng 1 2016

lấy VD cụ thể là ra thôi bạn à

tick tôi nha