Chứng minh:
\(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{10^2}>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề : S < 1
\(s< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+..................+\frac{1}{9.10}\)
\(\Leftrightarrow S< 1-\frac{1}{10}\)
vậy S < 1
\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow D< 1-\frac{1}{2017}< 1\)
Vậy C > D
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)
Chứng minh rằng:
\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+....+\frac{1}{98^2}\) >\(\frac{10}{33}\)
Giải
Nhận xét: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{98^2}< \frac{1}{97.98}\)
gọi dãy số trên là A
Ta có: A< \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{97.98}\) .Ta có \(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\);...
\(\Rightarrow\)A< \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{98}\)( Mục đích triệt tiêu hết các số)
A<\(\frac{1}{2}-\frac{1}{98}\)=\(\frac{24}{49}\)
đến đây các cậu tự làm
1.
\(6=\frac{\sqrt{2}^2}{x}+\frac{\sqrt{3}^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}=\frac{5+2\sqrt{6}}{x+y}\)
\(\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\frac{x}{\sqrt{2}}=\frac{y}{\sqrt{3}}\\x+y=\frac{5+2\sqrt{6}}{6}\end{matrix}\right.\)
Bạn tự giải hệ tìm điểm rơi nếu thích, số xấu quá
2.
\(VT\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\ge\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
Đặt \(x+y+z=t\Rightarrow0< t\le1\)
\(VT\ge\sqrt{t^2+\frac{81}{t^2}}=\sqrt{t^2+\frac{1}{t^2}+\frac{80}{t^2}}\ge\sqrt{2\sqrt{\frac{t^2}{t^2}}+\frac{80}{1^2}}=\sqrt{82}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
3.
\(\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{a^2}{b^5}+\frac{1}{a^3}+\frac{1}{a^3}\ge5\sqrt[5]{\frac{a^6}{b^{15}.a^6}}=\frac{5}{b^3}\)
Tương tự: \(\frac{3b^2}{c^5}+\frac{2}{b^3}\ge\frac{5}{a^3}\) ; \(\frac{3c^2}{d^5}+\frac{2}{c^3}\ge\frac{5}{d^3}\) ; \(\frac{3d^2}{a^5}+\frac{2}{d^2}\ge\frac{5}{a^3}\)
Cộng vế với vế và rút gọn ta được: \(3VT\ge3VP\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=1\)
4.
ĐKXĐ: \(-2\le x\le2\)
\(y^2=\left(x+\sqrt{4-x^2}\right)^2\le2\left(x^2+4-x^2\right)=8\)
\(\Rightarrow y\le2\sqrt{2}\Rightarrow y_{max}=2\sqrt{2}\) khi \(x=\sqrt{2}\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge-2\\\sqrt{4-x^2}\ge0\end{matrix}\right.\) \(\Rightarrow x+\sqrt{4-x^2}\ge-2\)
\(y_{min}=-2\) khi \(x=-2\)
Đặt A = 1 - 1/22 - 1/32 - 1/42 - ....... - 1/102
=> A>1-1/2.3 - 1/3.4 - 1/4.5 - ........ - 1/10.11
=> A> 1 - (1/2.3 + 1/3.4 + 1/4.5 + ..... + 1/10.11)
=> A> 1 - (1/2 -1/3 +1/3 - 1/4 + 1/4 -1/5+...+1/10-1/11)
=> A> 1 - (1/2 - 1/11)
=> A> 1 - 9/22
mà 9/22 < 1 nên (1 - 9/22) : dương
=> (1/9/22) > 0
=> A>0 (điều phải chứng minh)
\(\frac{1}{2^2}>\frac{1}{1.2};\frac{1}{3^2}>\frac{1}{2.3};.....;\frac{1}{10^2}>\frac{1}{9.10}\)
\(\Rightarrow1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{10^2}>1-\frac{1}{1.2}-\frac{1}{2.3}-....-\frac{1}{9.10}\)
\(\Rightarrow1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{10^2}>1-\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)-...-\left(\frac{1}{9}-\frac{1}{10}\right)\)
\(\Rightarrow1-\frac{1}{2^2}-\frac{1}{3^2}-....-\frac{1}{10^2}>1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-....-\frac{1}{9}+\frac{1}{10}=\frac{1}{10}>0\)
=>ĐPCM