Hãy nêu quy trình bấm phím để tính tổng các cạnh huyền của 20 tam giác vuông đầu tiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1 cạnh góc vuông là x ( cm) ( x > 0)
Cạnh huyền là x + 1 ( cm)
Áp dụng ĐL Pi ta go => cạnh góc vuông còn lại là \(\sqrt{\left(x+1\right)^2-x^2}=\sqrt{\left(x+1+x\right).\left(x+1-x\right)}=\sqrt{2x+1}\) (cm)
Theo bài cho ta có pt: x + \(\sqrt{2x+1}\) = x + 1 + 4
=> \(\sqrt{2x+1}\) = 5 => 2x + 1 = 25 => x = 12 ( cm)
Vậy 1 cạnh góc vuuong là 12 cm ; cạnh góc vuông còn lại là \(\sqrt{2.12+1}=5\) cm;
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Bài 1:
3 4 x y z
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
- Giả sử cạnh huyền BC > AB 1 cm , ta có :
BC - AB = 1
( AB + AC ) - BC = 4 cm
=> AC = 5cm
Ta có : \(\hept{\begin{cases}BC-AB=1\\BC^2=AB^2+AC^2\end{cases}}\)( đlí Py - ta - go )
BC - AB = 1 => BC = AB + 1
( AB + 1 )2 = AB2 + AC2
AB2 + 2AB + 1 = AB2 + AC2
2AB + 1 = AC2
2AB = AC2 - 1 = 52 - 1 = 24
\(\Rightarrow AB=\frac{24}{2}=12\Rightarrow BC=12+1=13\)
Vậy : AB = 12cm
AC = 5cm
BC = 13cm