\(X-\sqrt{X^2-2X+1}\) VỚI X>=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{\sqrt{2}}.A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}-\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}}\)
\(=\frac{\sqrt{\left[\left(\sqrt{x-1}+1\right)\right]^2}+\sqrt{\left[\left(\sqrt{x-1}-1\right)^2\right]}}{\sqrt{\left[\sqrt{2x-1}+1\right]^2}-\sqrt{\left[\left(\sqrt{2x-1}\right)-1\right]^2}}\)
\(=\frac{\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|}{\left|\sqrt{2x-1}+1\right|-\left|\sqrt{2x-1}-1\right|}\)
DO X>2 NÊN TOÀN BỘ BIỂU THỨC TRONG TRỊ TUYỆT ĐỐI ĐỀU DƯƠNG
\(\frac{1}{\sqrt{2}}.A=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
=>\(A=\frac{\sqrt{x-1}}{\sqrt{2}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: x>0, x \(\ne1;4\)
Rút gọn :
\(A=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2}+\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)^2}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{2\left(x+1\right)}{x-1}\)
\(A>1\Leftrightarrow\frac{2\left(x+1\right)}{x-1}>1\Leftrightarrow\frac{2\left(x+1\right)}{x-1}-1>0\)
\(\Leftrightarrow\frac{2x+2-x+1}{x-1}>0\)
\(\Leftrightarrow\frac{x+3}{x-1}>0\)(theo đk x>0=>x+3>0)
\(\Rightarrow x-1>0\Rightarrow x>1\)
Kết hợp điều kiện x>0, x khác 1;4
=> x>1, x khác 4 thì P>1
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(x< -\frac{1}{2}\)
\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\right)\sqrt{x^2+x+1}\)
\(\Leftrightarrow\left(-2x-1\right)\sqrt{x^2-x+1}< \left(-2x+1\right)\sqrt{x^2+x+1}\)
\(\Leftrightarrow\left(4x^2+4x+1\right)\left(x^2-x+1\right)< \left(4x^2-4x+1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow6x< 0\)đúng
Xét \(-\frac{1}{2}\le x< \frac{1}{2}\)
Thì VT dương VP âm nên đúng
Xét \(x\ge\frac{1}{2}\)làm tương tự như TH 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A)
Đặt \(\sqrt{1+2x}=a; \sqrt{1-2x}=b\) (\(a,b>0\) )
\(\Rightarrow \left\{\begin{matrix} a^2+b^2=2\\ a^2-b^2=4x=\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} 2a^2=2+\sqrt{3}\rightarrow 4a^2=4+2\sqrt{3}=(\sqrt{3}+1)^2\\ 2b^2=2-\sqrt{3}\rightarrow 4b^2=4-2\sqrt{3}=(\sqrt{3}-1)^2\end{matrix}\right.\)
\(\Rightarrow a=\frac{\sqrt{3}+1}{2}; b=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow ab=\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{4}=\frac{1}{2}; a-b=1\)
Có:
\(A=\frac{a^2}{1+a}+\frac{b^2}{1-b}=\frac{a^2-a^2b+b^2+ab^2}{(1+a)(1-b)}\)
\(=\frac{2-ab(a-b)}{1+(a-b)-ab}=\frac{2-\frac{1}{2}.1}{1+1-\frac{1}{2}}=1\)
B)
\(2x=\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\)
\(\Rightarrow 4x^2=\frac{a}{b}+\frac{b}{a}+2\)
\(\rightarrow 4(x^2-1)=\frac{a}{b}+\frac{b}{a}-2=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
\(\Rightarrow \sqrt{4(x^2-1)}=\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\) do $a>b$
T có: \(B=\frac{b\sqrt{4(x^2-1)}}{x-\sqrt{x^2-1}}=\frac{2b\sqrt{4(x^2-1)}}{2x-\sqrt{4(x^2-1)}}=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}-\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}\)
\(=\frac{2b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{2\sqrt{\frac{b}{a}}}=\frac{b\left ( \sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}} \right )}{\sqrt{\frac{b}{a}}}=\frac{\frac{b(a-b)}{\sqrt{ab}}}{\sqrt{\frac{b}{a}}}=a-b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}\right)}-\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}\)=\(\frac{\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}}{\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}}\)Vì x>/2
=\(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{x-1}+1-\sqrt{x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
@AD dragon Boy
SGK chưa phải lúc nào cũng đúng
bằng chứng vẫn có phần đinh chính kèm theo
mà 100% bạn chưa đọc cái đinh chính đó
=> 100% câu trả lời của bạn có thể chưa đúng
@thien minh
hd
đặt hai căn là a, b
\(x-\sqrt{x^2-2x+1}\)
= \(x-\sqrt{\left(x-1\right)^2}\)
= \(x-x+1\)
= \(1\)
Vậy: \(x-\sqrt{x^2-2x+1}=1\)