Tính giá trị biểu thức \(A=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\) biết a - b = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a-b=3\Rightarrow b=a-3$. Khi đó:
$A=\frac{a-8}{a-3-5}-\frac{4a-(a-3)}{3a+3}=\frac{a-8}{a-8}-\frac{3a+3}{3a+3}=1-1=0$
\(a, x^3+5x^2-9x-45=0\\ \Leftrightarrow x^2\left(x+5\right)-9\left(x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\left(x\ne-5\right)\\ \text{Với }x=3\Leftrightarrow A=\dfrac{9-9}{3\left(3+5\right)}=0\\ \text{Với }x=-3\Leftrightarrow A=\dfrac{9-9}{3\left(-3+5\right)}=0\\ \text{Vậy }A=0\\ b,B=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}\\ B=\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)
\(\dfrac{a}{6}=\dfrac{b}{9}\)
\(\Leftrightarrow9a=6b\)
\(\Rightarrow3a=2b\)(chia cả 2 vế cho 3)
\(\Rightarrow3a-2b=0\Rightarrow\dfrac{3a-2b}{3a+2b}=0\)
Chúc bn học tốt
Ta có: `a/6 = b/9` `-> 9a = 6b`
`-> 3a = 2b`
Vì `3a = 2b` nên `3a - 2b = 0`.
`-> A = (3a - 2b)/(3a + 2b) = 0/(3a + 2b) = 0`
Vậy giá trị biểu thức `A` là `0`.
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
Theo đề bài : \(a-b=3\Rightarrow a=b+3\).
Thay \(a=b+3\) vào \(A\) ta được :
\(A=\dfrac{a-8}{b-5}-\dfrac{4a-b}{3a+3}\)
\(=\dfrac{b+3-8}{b-5}-\dfrac{4\left(b+3\right)-b}{3\left(b+3\right)+3}\)
\(=\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\)
\(=1-\dfrac{3b+12}{3b+12}=1-1=0\)
Vậy : Với \(a-b=3\) thì \(A=0.\)
\(a-b=3\\ \Rightarrow a=3+b\)
Thay \(a=3+b\) vào \(A\)
\(A=\dfrac{b+3-8}{b-5}-\dfrac{4.\left(b+3\right)-b}{3.\left(b+3\right)+3}\\ =\dfrac{b-5}{b-5}-\dfrac{4b+12-b}{3b+9+3}\\ =\dfrac{b-5}{b-5}-\dfrac{3b+12}{3b+12}\\ =1-1=0\)
Vậy \(A=0\)