K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

a) Xét pt hoành độ gđ của (d) và (P):

\(x^2-mx+m-1=0\) (*)

Thay m=4 vào pt (*) => x=3 và x=1 thay vào (P) suy ra được tung độ tương ứng y=9 và y=1

Đ/a: \(\left(3;9\right),\left(1;1\right)\)

b) Để (d) và (P) cắt nhau tại hai điểm pb <=> \(\Delta>0\) <=> \(m^2-4\left(m-1\right)>0\) <=> \(\left(m-2\right)^2>0\) <=> \(m\ne2\)

Theo giả thiết => \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{1}{\left(\dfrac{1}{\sqrt{5}}\right)^2}\)  (Áp dụng hệ thức lượng trong tam giác vuông)

\(\Leftrightarrow\dfrac{x^2_1+x_2^2}{x_1^2.x_2^2}=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1x_2\right)^2=0\)

\(\Leftrightarrow m^2-2\left(m-1\right)-5\left(m-1\right)^2=0\)

\(\Leftrightarrow-4m^2+8m-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

a) Thay x=4 vào (P), ta được:

\(y=\dfrac{4^2}{2}=\dfrac{16}{2}=8\)

Thay x=4 và y=8 vào (d), ta được:

\(m\cdot4-m+2=8\)

\(\Leftrightarrow3m=6\)

hay m=2

Vậy: m=2

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{x^2}{2}=mx-m+2\)

\(\Leftrightarrow\dfrac{1}{2}x^2-mx+m-2=0\)

\(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-2\right)\)

\(=m^2-2\left(m-2\right)\)

\(=m^2-2m+4\)

\(=m^2-2m+1+3\)

\(=\left(m-1\right)^2+3>0\forall m\)

Do đó: (P) và (d) luôn cắt nhau tại hai điểm phân biệt(Đpcm)

21 tháng 4 2021

a, Xét hoành độ giao điểm của P và d ta có:

x2 = 3x + m2 - 2 

\(\Delta=b^2-4ac=4m^2+1>0\) ∀x 

=> d luôn cắt P tại hai điểm phân biệt.

 

 

 

 

NV
21 tháng 3 2021

Phương trình hoành độ giao điểm (P) và (d):

\(x^2=mx+1\Leftrightarrow x^2-mx-1=0\) (1)

\(ac=-1< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb trái dấu hay (d) luôn cắt (P) ở 2 phía của Oy

Không mất tính tổng quát, giả sử 2 nghiệm của (1) là \(x_A< 0< x_B\)

Gọi C và D lần lượt là hình chiếu vuông góc của A và B lên Ox

\(\Rightarrow x_C=x_A;x_D=x_B\)

\(S_{OAB}=S_{ABDC}-\left(S_{OAC}+S_{OBD}\right)\)

\(=\dfrac{1}{2}\left(x_B-x_A\right)\left(y_A+y_B\right)-\dfrac{1}{2}\left(y_A.\left(-x_A\right)+y_B.x_B\right)\)

\(=\dfrac{1}{2}\left(x_B-x_A\right)\left[m\left(x_A+x_B\right)+2\right]-\dfrac{1}{2}\left(x_B\left(mx_B+1\right)-x_A\left(mx_A+1\right)\right)\)

\(=\dfrac{1}{2}\left(x_B-x_A\right)=2\Rightarrow x_B-x_A=4\)

Kết hợp hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=m\\x_B-x_A=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=\dfrac{m+4}{2}\\x_A=\dfrac{m-4}{2}\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{m+4}{2}\right)\left(\dfrac{m-4}{2}\right)=-1\Leftrightarrow m^2-16=-4\)

\(\Rightarrow m=\pm2\sqrt{3}\)

a: PTHĐGĐ là;

-1/4x^2-mx+m+2=0

=>1/4x^2+mx-m-2=0

=>x^2+4mx-4m-8=0

\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)

\(=16m^2+16m+32\)

\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)

=>Phương trình luôn có hai nghiệm phân biệt

b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)

\(=4m\left(4m+8\right)\)

\(=\left(16m^2+32m+16-16\right)\)

\(=\left(4m+4\right)^2-16>=-16\)

Dấu = xảy ra khi m=-1

23 tháng 2 2023

 

\