Tìm số tư nhiên khác không (a,,b,c)sao cho:
(1/a)+(1/a+b)+(1/a+b+c)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath
a=b=c = 1 : ( 1+1+1)
a = =b=c = 1 : 3
a = b = c = 1/3
a=b=c = > 3
nha
Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.
Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.
Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.
Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
ĐKXĐ: \(a\ne0;\)\(a+b\ne0;\)\(a+b+c\ne0\)
Vì 3 số a,b,c là 3 số tự nhiên
\(\Rightarrow\)\(\frac{1}{a}\ge a+b;\)\(\frac{1}{a}\ge\frac{1}{a+b+c}\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
\(\Rightarrow\)\(0< a\le3\)
Sau đó bn xét từng trường hợp a = 1,2,3 để giải biểu thức trên là xong nhé
Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath