với x,y,z>0 CMR
(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2) >= (x+y+z)(1/x+1/y+1/z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{1+y+1+z+1+x}=\frac{(x+y+z)^2}{(x+y+z)+3}\)
Áp dụng BĐT Cauchy:
\(x+y+z\geq 3\sqrt[3]{xyz}=3\)
Do đó:
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\geq \frac{(x+y+z)^2}{(x+y+z)+3}\geq \frac{(x+y+z)^2}{(x+y+z)+(x+y+z)}=\frac{x+y+z}{2}\geq \frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
P/s: Bạn chú ý lần sau gõ tiêu đề bằng công thức toán !!!
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(VT\ge\dfrac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2xz}=\dfrac{9}{\left(x+y+z\right)^2}=9\)
Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)
x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.
A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)
Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3
dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3
suy ra A<1/3.3=1(đpcm)
Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b)
Ta có :
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²)
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm).
Với a;b;c dương ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)
Lại có:
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
Áp dụng:
\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{1}{3}\left(x+y+z\right)^2.\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2\)
\(=\dfrac{1}{9}\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(=\dfrac{1}{9}.9.\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dấu "=" xảy ra khi \(x=y=z\)