K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 3 2023

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-1\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=1^2-2.\left(-1\right)=3\)

30 tháng 5 2021

\(x^2-2x-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}u=x_1+\left(x_2\right)^2\\v=x_2+\left(x_1\right)^2\end{matrix}\right.\)

\(\Rightarrow\)\(\left\{{}\begin{matrix}u+v=\left(x_1+x_2\right)+\left(x_2+x_1\right)^2-2x_1x_2\\uv=2x_1x_2+x_1^3+x_2^3=2x_1x_2+\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\)

=>u và v là nghiệm của pt \(t^2-8t+12=0\)

20 tháng 12 2017

a)  2 x 2   –   17 x   +   1   =   0

Có a = 2; b = -17; c = 1

Δ   =   b 2   –   4 a c   =   ( - 17 ) 2   –   4 . 2 . 1   =   281   >   0 .

Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 17 / 2 x 1 x 2 = c / a = 1 / 2

b)  5 x 2   –   x   –   35   =   0

Có a = 5 ; b = -1 ; c = -35 ;

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 5 . ( - 35 )   =   701   >   0

Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:

x 1 + x 2 = − b / a = 1 / 5 x 1 ⋅ x 2 = c / a = − 35 / 5 = − 7

c)  8 x 2   –   x   +   1   =   0

Có a = 8 ; b = -1 ; c = 1

Δ   =   b 2   –   4 a c   =   ( - 1 ) 2   –   4 . 8 . 1   =   - 31   <   0

Phương trình vô nghiệm nên không tồn tại x1 ; x2.

d)  25 x 2   +   10 x   +   1   =   0

Có a = 25 ; b = 10 ; c = 1

Δ   =   b 2   –   4 a c   =   10 2   –   4 . 25 . 1   =   0

Khi đó theo hệ thức Vi-et có:

x 1 + x 2 = − b / a = − 10 / 25 = − 2 / 5 x 1 x 2 = c / a = 1 / 25

a: khi m=1 thì pt sẽ là:

x^2-4x-5=0

=>x=5; x=-1

b: |x1|-|x2|=-2022

=>x1^2+x2^2-2|x1x2|=2022^2

=>(x1+x2)^2-2x1x2-2|x1x2|=2022^2

=>(2m+2)^2-2|-5|-2*(-5)=2022^2

=>(2m+2)^2=2022^2

=>2m+2=2022 hoặc 2m+2=-2022

=>m=1010 hoặc m=-1012

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

21 tháng 5 2017

Theo hệ thức Vi-ét ta có:

x1+x2=\(-\frac{-1}{1}=1\)

x1x2=\(\frac{1+m}{1}=1+m\)

=> x1x2(x1x2-2)=3(x1+x2)

<=> (1+m)(1+m-2)=3

<=> m2-1=3

<=>m2=4

<=> m=-2 hoặc m =2 (loại)

Vậy m = -2

a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

để phương trình có hai nghiệm phân biệt thì m-2<>0

hay m<>2

Theo đề, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)

\(\Leftrightarrow m^2-25=4m-4\)

\(\Leftrightarrow m^2-4m-21=0\)

=>(m-7)(m+3)=0

=>m=7 hoặc m=-3