K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

2A = \(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(2+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

A = \(2-\frac{1}{2^{2016}}\)

1 tháng 3 2017

=\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+.......+\(\frac{1}{2016}\)-\(\frac{1}{2017}\)+1

=\(\frac{1}{1}\)-\(\frac{1}{2017}\)+1

=\(\frac{2016}{2017}\)+1

=\(\frac{1}{2017}\)

1 tháng 3 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}+1\)

\(=1-\frac{1}{2017}+1\)

\(=\frac{2016}{2017}+1\)

\(=\frac{4033}{2017}\)

15 tháng 2 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)16 

2A=\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2017}\)

2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)-\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

A=\(\frac{1}{2017}-\frac{1}{2}\)

15 tháng 2 2017

A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

2A = \(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

A = \(1-\frac{1}{2^{2016}}\)

19 tháng 9 2015

A = 1+2+3+...+100

A = 100.(100+1):2 = 5050

1+2+3+.......+n = n(n+1):2

C = 2+4+6+.........+2016

C = (2 + 2016) x 1008 : 2 = 1017072 

11 tháng 2 2018

        \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Rightarrow\)\(A=1-\frac{1}{2^{2016}}\)

7 tháng 5 2017

\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)

\(S=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2035153}\)

\(S=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{4070306}\)

\(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{2017.2018}\)

\(S=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(S=2.\left(\frac{1}{2}-\frac{1}{2018}\right)=2.\frac{504}{1009}=\frac{1008}{1009}\)

Vậy \(S=\frac{1008}{1009}\)

7 tháng 5 2017

\(S=\frac{1008}{1009}\)

14 tháng 7 2015

a

so so hang

(100-1):1+1=100(so hang)

tong bang

(100+1)x100:2=5050

14 tháng 7 2015

 

a, số các số hạng là : ( 100 - 1 ) : 1 + 1 = 100 ( số )

   tổng S là : ( 100 + 1 ) x 100 : 2 = 5050

b, số các số hạng là : ( 2016 - 1 ) : 1 + 1 = 2016 ( số )

  tổng S là : ( 2016 + 1 ) x 2016 : 2 = 2 033 136

  đúng 100% luôn bn **** cho mh nha . 

4 tháng 5 2017

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)

Ta có : \(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)

          \(2A=2+\frac{2}{2}+\frac{2}{2^2}+\frac{2}{2^3}+...+\frac{2}{2^{2017}}\)

          \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

    \(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

          \(A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2016}}-\frac{1}{2^{2017}}\)

         \(A=2-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Vậy   \(A=\frac{2^{2018}-1}{2^{2017}}\)

4 tháng 5 2017

A=đã cho.

2A=1+1/2+1/2^2+1/2^3+...+1/2^2016.

2A-A=1-1/2^2017(khử).

A=1-1/2^2017.

14 tháng 2 2018

           \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Leftrightarrow\)\(A=1-\frac{1}{2^{2016}}\)

14 tháng 2 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+......+\frac{1}{2^{2016}}\)

\(2A=1+\frac{1}{2}+.........+\frac{1}{2^{2015}}\)

\(2A-A=\left(1+\frac{1}{2}+.....+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2016}}\right)\)

\(A=1-\frac{1}{2^{2016}}\)