K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để P là số nguyên dương thì x^2-4x>=0 và x^2-4x chia hết cho x^2+2

=>x^2+2-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>-4x-2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>4x+2 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>16x^2-4 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>16x^2+32-36 chia hết cho x^2+2 và (x>=4 hoặc x<=0)

=>\(x^2+2\in\left\{2;3;4;6;9;12;18;36\right\}\)  và (x>=4 hoặc x<=0)

=>\(x\in\left\{0;4;\sqrt{34};-\sqrt{34};-1;-\sqrt{2};-2;-\sqrt{7};-\sqrt{10};-4\right\}\)

NV
26 tháng 3 2023

Khi đề yêu cầu P nguyên mà ko có điều kiện x nguyên thì phương pháp tốt nhất luôn là tìm miền giá trị của P từ đó lọc ra những số nguyên rồi tìm ngược lại x

\(P=\dfrac{x^2-4x}{x^2+2}=\dfrac{-\left(x^2+2\right)+2x^2-4x+2}{x^2+2}=-1+\dfrac{2\left(x-1\right)^2}{x^2+2}\ge-1\)

\(P=\dfrac{2\left(x^2+2\right)-x^2-4x-4}{x^2+2}=2-\dfrac{\left(x+2\right)^2}{x^2+2}\le2\)

\(\Rightarrow-1\le P\le2\)

Mà \(P\) nguyên dương \(\Rightarrow P=\left\{1;2\right\}\)

-  Với \(P=1\Rightarrow\dfrac{x^2-4x}{x^2+2}=1\Rightarrow-4x=2\Rightarrow x=-\dfrac{1}{2}\)

- Với \(P=2\Rightarrow\dfrac{x^2-4x}{x^2+2}=2\Rightarrow x^2+4x+4=0\Rightarrow x=-2\)

Vậy \(x=\left\{-2;-\dfrac{1}{2}\right\}\)

27 tháng 10 2023

a) 2ˣ + 2ˣ⁺³ = 72

2ˣ.(1 + 2³) = 72

2ˣ.9 = 72

2ˣ = 72 : 9

2ˣ = 8

2ˣ = 2³

x = 3

b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)

Ta có:

x - 2 = x + 1 - 3

Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)

⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ x ∈ {-4; -2; 0; 2}

Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên

c) P = |2x + 7| + 2/5

Ta có:

|2x + 7| ≥ 0 với mọi x ∈ R

|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R

Vậy GTNN của P là 2/5 khi x = -7/2

21 tháng 12 2021

a) ĐK:\(\begin{cases} x + 2≠0\\ x - 2≠0 \end{cases}\)\(\begin{cases} x ≠ -2\\ x≠ 2 \end{cases}\)

Vậy biểu thức P xác định khi x≠ -2 và x≠ 2

b) P= \(\dfrac{3}{x+2}\)-\(\dfrac{2}{2-x}\)-\(\dfrac{8}{x^2-4}\)

P=\(\dfrac{3}{x+2}\)+\(\dfrac{2}{x-2}\)-\(\dfrac{8}{(x-2)(x+2)}\)

P= \(\dfrac{3(x-2)}{(x-2)(x+2)}\)+\(\dfrac{2(x+2)}{(x-2)(x+2)}\)-\(\dfrac{8}{(x-2)(x+2)}\)

P= \(​​​​\dfrac{3x-6+2x+4-8}{(x-2)(x+2)}\)

P=\(\dfrac{5x-10}{(x-2)(x+2)}\)

P=\(\dfrac{5(x-2)}{(x-2)(x+2)}\)

P=\(\dfrac{5}{x+2}\)

Vậy P=\(\dfrac{5}{x+2}\)

21 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

22 tháng 9 2023

Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)

Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)

Ta có bảng giá trị:

x - 2-1-313
x1 (tm)-1 (tm)3 (tm)5 (tm)

Vậy ...

22 tháng 9 2023

Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)

\(\Rightarrow A=1+\dfrac{3}{x-2}\)

Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)

\(\Rightarrow3⋮\left(x-2\right)\)

\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)

Do đó ta có bảng :

x-2 1 3 -1 -3
x 3 5 1 -1

 

Vậy..........

 

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

a: Để A là số hữu tỉ dương thì \(\dfrac{x-5}{9-x}>0\)

\(\Leftrightarrow\dfrac{x-5}{x-9}< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\\x-9< 0\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: Để A không là số hữu tỉ dương cũng không là số hữu tỉ âm thì x-5=0

hay x=5

c: Để A là số nguyên thì \(x-5⋮9-x\)

\(\Leftrightarrow4⋮x-9\)

\(\Leftrightarrow x-9\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{10;8;11;7;13;5\right\}\)

Thanks bạn nha!

14 tháng 12 2021

\(y=\dfrac{2x-3}{x-2}=\dfrac{2\left(x-2\right)+1}{x-2}=2+\dfrac{1}{x-2}\in Z\\ \Leftrightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{1;3\right\}\)