cho x>2,y>2 chứng minh xy>x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\geq \frac{4}{x^2+xy+y^2+xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1^2}=4\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=\frac{1}{2}$
Đề sai rồi kìa:)
Cho x = - 1; y = -1 có: x.y = 1 và x + y = -2.
x.y > x+y mà x+y =-2 <4.
Nhìn lại đề bài nhé!
Vậy hả mình lấy bài trên mạng nên có khi sai. Cảm ơn bạn nhé
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}\ge\frac{2.4}{2xy+x^2+y^2}=\frac{8}{\left(x+y\right)^2}=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
không mất tính tổng quát giả sử x \(\le\)y
BĐT tương đương \(\frac{1}{1+x^2}-\frac{1}{1+xy}\ge\frac{1}{1+xy}-\frac{1}{1+y^2}\)
quy đồng và rút gọn ta được \(\frac{x}{\left(1+x^2\right)}\ge\frac{y}{1+y^2}\)
suy ra \(x\left(1+y^2\right)\ge y\left(1+x^2\right)\)
Phá ngoặc, chuyển vế, phân tích nhân tử ta được (y - x)(xy - 1) \(\ge\)0 (1)
vì x, y\(\ge\)1 và y \(\ge\)x nên (1) luôn đúng. (đpcm)
2) Ta có:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Mà x+y=1 nên suy ra:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)
\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)
=>đpcm.
Dấu ''='' xảy ra khi x=y=1/2
Áp dụng BĐT AM-GM ta có:
\(\frac{\left(y+z\right)\sqrt{yz}}{x}\ge\frac{2\sqrt{yz}\cdot\sqrt{yz}}{x}=\frac{2\sqrt{\left(yz\right)^2}}{x}=\frac{2yz}{x}\)
Tương tự cho 2 BĐT còn lại ta cũng có
\(\frac{\left(x+y\right)\sqrt{xy}}{z}\ge\frac{2xy}{z};\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xz}{y}\)
\(\Leftrightarrow\frac{\left(y+z\right)\sqrt{yz}}{x}+\frac{\left(x+y\right)\sqrt{xy}}{z}+\frac{\left(x+z\right)\sqrt{xz}}{y}\ge\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\)
Cần chứng minh \(\frac{2xy}{z}+\frac{2yz}{x}+\frac{2xz}{y}\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge x+y+z\)
Áp dụng BĐT AM-GM:
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2\sqrt{y^2}=2y\)
Tương tự rồi cộng theo vế ta có ĐPCM
Khi \(x=y=z\)
ta cần chứng minh 2xy>2x+2y
2xy-2x-2y>0
xy-2x+xy-2y>0
x(y-2)+y(x-2)>0
do x>2 và y>2 nên điều trên là đúng
=>2xy>2x+2y
=>xy>x+y