CMR đa thức P(x) =-4x^4+2x^3+x+1 không có x thuộc Z thỏa mãn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gỉa sử a là nghiệm nguyên của P(X) .
- Khi đó P(x) có dạng : \(P_{\left(x\right)}=\left(x-a\right)g\left(x\right)\)
- Theo bài ra ta có : \(P\left(x\right)=\left(2-a\right)\left(3-a\right)\left(4-a\right)g\left(2\right)g\left(3\right)g\left(4\right)=154\)
Thấy : \(\left(2-a\right)\left(3-a\right)\left(4-a\right)⋮3\forall a\in Z\)
Mà \(154⋮̸3\)
Vậy đa thức P(x) không có nghiệm nguyên .
mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12
1. a) Cho \(x^2-25=0\)
\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Rightarrow\) x = 5 hoặc x = -5
Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.
b) Cho \(x^2+8x-9=0\)
\(\Rightarrow x^2-x+9x-9=0\)
\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Rightarrow x=-9\) hoặc \(x=1\)
Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.
Cứ nói người ta ngu trong khi cứ ngồi đó,giỏi thì làm đi
b gipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipgipụt
\(x=0\Rightarrow A\left(0\right)=0\Rightarrow0\text{ là một nghiệm của PT}\)
\(x=4\Rightarrow A\left(2\right)=0\Rightarrow2\text{ là một nghiệm của PT}\)
\(\text{Vậy: }A\left(x\right)\text{ có thể viết dưới dạng }A\left(x\right)=x\left(x-2\right).Q\left(x\right)\)
\(\Rightarrow x.\left(x-2\right)\left(x-4\right).Q\left(x-2\right)=\left(x-4\right).x.\left(x-2\right).Q\left(x\right)\)
\(\Rightarrow x\left(x-2\right)\left(x-4\right).\left[Q\left(x\right)-Q\left(x-2\right)\right]=0\)
\(\text{Có thể thấy: }Q\left(x\right)=Q\left(x-2\right)=m\Rightarrow x=0,2,4\text{ thế vào PT, ta có: }x=4\text{ đã cho không nghiệm}\)
−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)
Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)
x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)
ta sẽ chứng minh:
x2+y2+z2≤2 ta có:
x2+y2+z2≤x2+y2+z2+2xy(từ (2) )
⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1) )
⇒x2+y4+z6≤2(đpcm)(từ (3) )
..
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)