K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Khi x >0 thì hàm số nghịch biến khi 2015-m<0<=>m>2015

Để hàm số nghịch biến khi x>0 thì 2015-m<0

=>m>2015

NV
30 tháng 3 2023

a.

Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)

b.

Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)

\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)

c.

Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)

\(\Rightarrow m>-\dfrac{3}{2}\)

22 tháng 3 2022

a, Để hàm số đồng biến thì:

`2-9m>0⇔9m<2⇔m<2/9`

a, Để hàm số nghịch biến thì:

`2-9m<0⇔9m>2⇔m>2/9`

31 tháng 7 2018

y = –( m 2  + 5m) x 3  + 6m x 2 + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +)  m 2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

∆ ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m  ≤  0 ⇔ –5/3  ≤  m  ≤  0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3  ≤  m  ≤  0 thì hàm số đồng biến trên R.

13 tháng 12 2017

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

a) Để hàm số đạt giá trị nhỏ nhất bằng 0 khi x=0 thì 2m-1>0

\(\Leftrightarrow2m>1\)

hay \(m>\dfrac{1}{2}\)

b) Để hàm số đồng biến khi x<0 và nghịch biến khi x>0 thì 2m-1<0

\(\Leftrightarrow2m< 1\)

hay \(m< \dfrac{1}{2}\)

29 tháng 11 2021

Hàm số y = (m+1)x -2m là hàm bậc nhất khi m+1 ≠ 0 ⇔ m ≠ - 1

a) Hàm số nghịch biến trên R khi a < 0  ⇔ m + 1< 0  ⇔ m < - 1

kết hợp với điều kiện. Vậy m < -1

b) Khi m = 1 ta được: y = (1+1)x - 2.1 hay y = 2x - 2

Đồ thị hàm số y = 2x - 2 đi qua hai điểm A(0;-2) và B(1;0)

c) Đồ thị của hai hàm số song song với nhau khi \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1=3\\-2m\ne6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\m\ne-3\end{matrix}\right.\)  

kết hợp với điều kiện. Vậy m = 2

30 tháng 11 2021

Tham Khảo:

 

Hàm số y = (m+1)x -2m là hàm bậc nhất khi m+1 ≠ 0 ⇔ m ≠ - 1

a) Hàm số nghịch biến trên R khi a < 0  ⇔ m + 1< 0  ⇔ m < - 1

kết hợp với điều kiện. Vậy m < -1

b) Khi m = 1 ta được: y = (1+1)x - 2.1 hay y = 2x - 2

Đồ thị hàm số y = 2x - 2 đi qua hai điểm A(0;-2) và B(1;0)

c) Đồ thị của hai hàm số song song với nhau khi   

kết hợp với điều kiện. Vậy m = 2

18 tháng 8 2016

đồng biến thì m+2>0

nghịch biến thì m+2<0