K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

ta có: M = 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +......+ 99/3^99 - 100/3^100

=> 3.M = 1 - 2/3 + 3/3^2 - 4/3^3 +.......+ 99/3^98 - 100/3^99

=> 3M + M = ( 1 - 2/3 + 3/3^2 - 4/3^3 +.........+ 99/3^98 - 100/3^99 ) + ( 1/3 - 2/3^2 + 3/3^3 - 4/3^4 +....+ 99/3^99 - 100/3^100 )

=> 4.M = 1- 1/3 + 1/3^2 - 1/3^3 +........+ 1/3^98 - 1/3^99 - 100/3^100

=> 12.M = 3 - 1 + 1/3 - 1/3^2 +.......+ 1/3^97 - 1/3^98 - 1/3^99

=> 12M + 4M = ( 3 - 1 + 1/3 - 1/3^2 +......+ 1/3^97 - 1/3^98 - 1/3^99 ) + ( 1 - 1/3 + 1/3^2 - 1/3^3 +.......+ 1/3^99 - 1/3^100 )

=> 16M = 3 - 101/3^99 - 100/3^100

vù 16M < 3

=> M < 3/16

vậy M < 3/16

tk cho mk nha,mk bị âm rùi

11 tháng 4 2024

  VZFVFVNCXN XHF 

17 tháng 4 2023

C gbcgghfdhsgxwvdgdrgdtdgst

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)