\(\sqrt{x-4}\)= 4-x
giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1:\(\sqrt{x+\sqrt{x-4}}+\sqrt{x-\sqrt{x-4}}=0\)
\(\Rightarrow\sqrt{x-4+\sqrt{x-4}+4}+\sqrt{x-4-\sqrt{x-4}+4}=0\)
\(\Rightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=0\)
\(\Rightarrow\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-4}+2+\sqrt{x-4}-2=0\\\sqrt{x-4}+2+2-\sqrt{x-4}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2\sqrt{x-4}=0\Rightarrow\sqrt{x-4}=0\Rightarrow x-4=0\Rightarrow x=4\\4=0\Rightarrow vôlí\end{matrix}\right.\)
\(\Rightarrow x=4\)
\(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\left(đk:x\ge-2\right)\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+2}-2\right)^2}=\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(\Leftrightarrow\left|\sqrt{x+2}-2\right|=\left|\sqrt{5}-2\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}-2=\sqrt{5}-2\\\sqrt{x+2}-2=2-\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=5\\x+2=21-8\sqrt{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=19-8\sqrt{5}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{3;19-8\sqrt{5}\right\}\)
ĐKXĐ : x \(\ge\) 4
Mà \(4-x=\sqrt{x+4}\ge0\Rightarrow x\le4\)
Do đó x=4
cảm ơn