K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Ta cần chứng minh số này chia hết cho 7 và 9

Hiển nhiên chia hết cho 7 vì 146\(⋮\)7 và 493\(⋮\)7 (1)

Ta có 146-493=1963-493=(196-49)(1962+196.49+492)=147.50421

Ta có 147 chia hết cho 3

50421 chia hết cho 3

=>146-493 chia hết cho 9 (2)

Từ (1) và (2)  =>ĐPCM

28 tháng 10 2019

b1,n+5\vdots n+1

\Rightarrow n+1+4\vdots n+1

\Rightarrow 4\vdots n+1 ( Vì n+1\vdots n+1 )

\Rightarrow n+1\in Ư(4) Ư(4)

Mà : Ư(4) = \left \{ 1; 2; 4 \right \}

*TH1 :

n+1=1

\Rightarrow n=1-1

\Rightarrow n=0

* TH2:

n+1=2

\Rightarrow n=2-1

\Rightarrow n=1

* TH3:

n+1=4

\Rightarrow n=4-1

\Rightarrow n=3

Vậy : n \in \left \{ 0;1;3 \right \}

28 tháng 10 2019

Ta có :

abba=1000a+100b+10b+a

=1001a+110b

=11.(91a+10b)

Số nào nhân với 11 cũng chia hết cho 11.

đpcm

7 tháng 10 2024

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

7 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

18 tháng 7 2017

a ) \(5^{61}+25^{31}+125^{21}=5^{61}+5^{62}+5^{63}=5^{61}\left(1+5+25\right)=5^{61}.31⋮31\)(đpcm)

b ) \(6^3+2.6^2+3^3=2^3.3^3+2^3.3^2+3^3=3^2\left(8.3+8+3\right)=3^2.35⋮35\) (đpcm)

Vậy ........

18 tháng 7 2017

Cảm ơn các bạn nhiều lắm nha!!!

8 tháng 8 2018

a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm

b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm

8 tháng 8 2018

a) Ta có: 4n+6 có chữ số tận cùng là số chẵn

=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn

Mà các số có chữ số chẵn tận cùng đều chia hết cho 2

Vậy (5n+7).(4n+6) chia hết cho 2

b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ

                 6n+5 có chữ số tận cùng cũng là một số lẻ

=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ

=> (8n+1).(6n+5) không chia hết cho 2

24 tháng 7 2015

abcabc = abc.1001= abc.77.13 chia hết cho 13

=> số có dạng abcabc luôn chia hết cho 13

24 tháng 7 2015

Ta có:abcabc=abc*77*13

=>abcabc chia hết cho 13

Vậy số có dạng abcabc luôn chia hết cho 13