Tìm X biết (X+1)+(X+2)+...+(X+10)=2015
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khoan cach giua 2 so la :2-1=1
co tat ca so so hang hay x la :(10-1):1+1=10
(x+1)+(x+2)+.....................(x+10)=2015
x*10+[(1+10)*10/2]=2015
x*10+55 =2015
x*10 =2015-55
x*10 =1960
x =1960/10
x =196
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2014}{2015}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1007}{2015}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{4030}\)
=>x+1=4030
=>x=4029
vậy x=4029
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{2015}:2\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
tự làm tiếp nhé mk ăn cơm đã
Lời giải:
$1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x(x+1)}=\frac{2014}{2015}$
$\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x(x+1)}=\frac{2014}{2015}$
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x(x+1)}=\frac{1007}{2015}$
$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1007}{2015}$
$1-\frac{1}{x+1}=\frac{1007}{2015}$
$\frac{1}{x+1}=1-\frac{1007}{2015}=\frac{1008}{2015}$
$\Rightarrow x+1=\frac{2015}{1008}$
$\Rightarrow x=\frac{1007}{1008}$
\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x(x+1)}=\frac{2014}{2015}$
(x + 1) + (x + 2) + (x + 3) + .................... + (x + 9) + (x + 10) = 2015
x + 1 + x + 2 + x + 3 + ....................... + x + 9 + x + 10 = 2015
10x + (1 + 2 + 3 + 4+ .................. + 10) = 2015
Áp dụng công thức tính dãy số vào dãy tổng 2 , ta có :
1 + 2 + 3 + 4 + .............. + 10 = \(\frac{\left[\left(10-1\right):1+1\right].\left(10+1\right)}{2}=\frac{10.11}{2}=5.11=55\)
=> 10x + 55 = 2015
=> 10x = 2015 - 55
=> 10x = 1960
=> x = 196
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ( x + 4 ) + ........ + ( x + 9 ) + ( x + 10 ) = 2015
X x 10 + ( 1 + 2 + 3 + 4 + .......... + 9 + 10 ) = 2015
Từ 1 đến 10 có 10 số hạng
Tổng của dãy số từ 1 đến 10 là:
( 10 + 1 ) x 10 : 2 = 45
Thay vào ta có:
X x 10 + 45 = 2015
X x 10 = 2015 - 45
X x 10 = 1970
X = 1970 : 10
X = 197
(x+1)+(x+2)+...+(x+10)=2015
(x+x+..+x)+(1+2+...+10)=2015
10x+55=2015
10x=2015-55
10x=1950
x=1950/10
x=195
Số số hạng là :
(x + 10) - (x + 1) + 1 = 10 (số hạng)
Tổng trên là :
[(x + 10) . (x + 1)] . 10 : 2 = (2x + 11) . 10 : 2 = 2015
=> (2x + 11) . 10 = 2015 . 2 = 4030
=> 2x + 11 = 4030 : 10 = 403
=> 2x = 403 - 11 = 392
=> x = 392 : 2 = 196
Vậy x = 196