Giúp em với ạ Tìm ước số chung của nhiều cặp số a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: UCLN(16;42)=2
UC(16;42)={1;2}
b: UCLN(168;120;144)=24
UC(168;120;144)={1;2;3;4;6;8;12;24}

Lời giải:
a. $ƯC(a,b)\in Ư(36)=\left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 9; \pm 12; \pm 18; \pm 36\right\}$
b. $Ư(a,b)\in Ư(50)=\left\{\pm 1; \pm 2; \pm 5; \pm 10; \pm 25; \pm 50\right\}$
Suy ra ước có 2 chữ số của $a,b$ là:
$\left\{\pm 10; \pm 25; \pm 50\right\}$

a) Ta có: \(n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
_Học tốt_
2n+ 5 là số lẻ mà bọi của 4 là số chẵn
vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N
học tốt

gọi d là ước chung của 5n+6 và 8n+7 nên
\(5n+6⋮d\Rightarrow40n+48⋮d\)
\(8n+7⋮d\Rightarrow40n+35⋮d\)
\(\Rightarrow40n+48-\left(40n+35\right)=13⋮d\Rightarrow d=\left\{1;13\right\}\)
UCLN(5n+6; 8n+7)=13

Bài 1:
60= 22.3.5 ; 88 = 23.11
ƯCLN(60;88)= 22 = 4
ƯC(60;88)=Ư(4)={1;2;4}
Bài 2:
24= 23.3 ; 30=2.3.5 ; 40 = 23.5
BCNN(24;30;40)=23.3.5= 120
BC(24;30;40)=B(120)={0;120;240;360;...}

Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại
Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm
Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm
Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)
TH1: p=6k+1
Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)
Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)
vì \(\left(6k+1\right)⋮5̸\)
\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số nguyên dương, loại.
TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn
\(\Rightarrow p\ge6\) không thoả mãn
Vậy....

Bài 1: UCLN(112;132;276)
112 = 24.7
132 = 22. 3 . 11
276 =22. 3 .23
=> UCLN(112;132;276)= 22 = 4

Đặt \(a=p^q+7q^p\)
Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)
Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ
\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)
\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ
TH1: \(p=2\Rightarrow a=2^q+7.q^2\)
- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)
- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)
\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)
TH2: \(q=2\Rightarrow a=p^2+7.2^p\)
- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)
- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)
Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu
Đây là bài toán rất khó về đồng dư thức, em cám ơn thầy Lâm đã giải rất cẩn thận ạ!
uses crt;
var a,b:array[1..100]of integer;
n,i,j,ucln:integer;
begin
clrscr;
write('Nhap so cap:'); readln(n);
for i:=1 to n do
begin
readln(a[i],b[i]);
end;
for i:=1 to n do
begin
if a[i]<b[i] then
begin
ucln:=1;
for j:=1 to a[i] do
if (a[i] mod j=0) and (b[i] mod j=0) then
begin
if ucln<j then ucln:=j;
end;
end
else begin
ucln:=1;
for j:=1 to b[i] do
if (a[i] mod j=0) and (b[i] mod j=0) then
begin
if ucln<j then ucln:=j;
end;
end;
writeln('Uoc chung lon nhat cua cap thu ',i,' la: ',ucln);
end;
readln;
end.