tìm các số tự nhiên có 2 chữ số biết rằng số đó gắp 4 làm tổng các chữ số của nó .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi số cần tìm là ab thì theo giả thiết, ta có: ab+a+b=65 <=> 11a+2b=65 => a\(\le\)5 và a lẻ (do 2b chẵn, 65 lẻ) => a\(\in\)(1;3;5) rồi giải ra tìm b.
Bài 2:
(chưa biết)
Gọi số phải tìm là \(\overline{ab}\)\((0< a,b< 10;a,b\in N)\)
Theo bài ra ta có :
\(\overline{ab}+a+b=65\)
\(\Rightarrow10a+b+a+b=65\)
\(\Rightarrow11a+2b=65\)
Vì 2b là số chẵn
\(\Rightarrow\)11a là số lẻ
Mà 11a<65\(\Rightarrow a\in\left(1;3;5\right)\)
Thử lại:a=5\(\Rightarrow b=5\)
Vậy số phải tìm là 55
Gọi SPT là : \(\overline{ab}\)
Ta có : \(\overline{ab}=9\times\left(a+b\right)\\ \overline{a0}+b=9\times a+9\times b\\ a\times10+b=9\times a+9\times b\\ a\times10-9\times a=9\times b-b\\ a=8\times b\)
Do `a,b` đều là các số có `1` chữ số nên dễ dàng tính được `a=8,b=1`
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
Gọi số đó là \(\overline{ab}\left(a,b< 10;a,b\in N\right)\)
Ta có \(\overline{ab}=2\left(a+b\right)\)
\(\Leftrightarrow10a+b=2a+2b\\ \Leftrightarrow8a=b\)
Vì a,b là các số tự nhiên nhỏ hơn 10 nên \(\left\{{}\begin{matrix}a=1\\b=8\end{matrix}\right.\)
Do đó số cần tìm là \(18\)