CHỨNG MINH RẰNG:
0+0=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đáng lẽ ra nên đặt với n thõa mãn điều kiện gì chứ
Phạm Lê Quỳnh Nga không làm gì mà cũng đòi xin l ike giống như chó không công mà đòi xin mồi
`sqrta+1>sqrt{a+1}`
`<=>a+2sqrta+1>a+1`
`<=>2sqrta>0`
`<=>sqrta>0AAa>0`
`sqrt{a-1}<sqrta`
`<=>a-1<a`
`<=>-1<0` luôn đúng
`sqrt6-1>sqrt3-sqrt2`
`<=>sqrt6-sqrt3+sqrt2-1>0`
`<=>sqrt3(sqrt2-1)+sqrt2-1>0`
`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng
+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.
+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)2 + bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.
+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.
Vậy: a,b,c > 0
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(0,\left(38\right)+0,\left(81\right)=0,\left(01\right).38+0,\left(01\right).81=\frac{1}{99}.38+\frac{1}{99}.81=\frac{1}{99}.\left(38+81\right)=\frac{1}{99}.119=\frac{119}{99}\ne1\)
Kết luận sai đề
Ta có: a b < a + c b + c
⇔ a(b + c) < (a + c)b
(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)
⇔ ab + ac < ab + bc
⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)
0+0=0
= 0x2=0
0+0=0 (ko có điều kiện phải chứng minh)