giải hệ phương trình:
a, \(4x^2-14x+12=0\)
b, \(3t^2-15t+5=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Δ=(-14)^2-4*4*12=196-192=4>0
=>Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x=\dfrac{14-2}{8}=\dfrac{12}{8}=\dfrac{3}{2}\\x=\dfrac{14+2}{8}=\dfrac{16}{8}=2\end{matrix}\right.\)
b: Δ=(-15)^2-4*3*5
=225-60=165>0
=>Phương trình có hai nghiệm pb là:
\(\left\{{}\begin{matrix}x=\dfrac{15-\sqrt{165}}{6}\\x=\dfrac{15+\sqrt{165}}{6}\end{matrix}\right.\)
a) (=) x2-2x+4=4 b) (=) 3x-2=0 hoặc 4x+5=0 (=) x2-2x=0 (=) 3x=2 hoặc 4x=5 (=) x(x-2)=0 (=) x=\(\dfrac{2}{3}\) hoặc x=\(\dfrac{5}{4}\) (=) x=0 hoặc x-2=0 (=) x=0 hoặc x=2
a.
ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=x+1-1\)
\(\Leftrightarrow\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}+2x-5\right)=\left(\sqrt{x+1}+1\right)\left(\sqrt{x+1}-1\right)\)
\(\Leftrightarrow\sqrt{x+1}+2x-5=\sqrt{x+1}-1\)
\(\Leftrightarrow2x-5=-1\)
\(\Leftrightarrow x=2\)
b.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(6x+10+4\sqrt{6x+10}+4=4x^2+20x+25\)
\(\Leftrightarrow\left(\sqrt{6x+10}+4\right)^2=\left(2x+5\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}+4=2x+5\\\sqrt{6x+10}+4=-2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{6x+10}=2x+1\left(1\right)\\\sqrt{6x+10}=-2x-9< 0\left(loại\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow6x+10=4x^2+4x+1\) \(\left(x\ge-\dfrac{1}{2}\right)\)
\(\Leftrightarrow4x^2-2x-9=0\)
\(\Rightarrow x=\dfrac{1+\sqrt{37}}{4}\)
a.\(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
Ta có: \(x^2+2x+5=x^2+2x+1+4=\left(x+1\right)^2+4\ge4>0;\forall x\)
\(\Rightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b.\(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\\x=3\end{matrix}\right.\)
c.\(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)