K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)

Vậy M<N

5 tháng 4 2017

n<m nha ban

chuc ban hoc gioi

tk cho minh nha

1 tháng 4 2018

dễ thôi

A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

\(10^8>10^7nen10^8-7>10^7-8\)

=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)

2 tháng 4 2018

\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1-\frac{13}{10^7-8}\);\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1-\frac{13}{10^7-7}\)

Vì \(\frac{13}{10^8-8}< \frac{13}{10^7-7}\)nên A>B

6 tháng 3 2017

\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)

\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

a.

\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)

b.

\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)

Hiển nhiên $10^7-8< 10^8-7$

$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$

$\Rightarrow A-1> B-1\Rightarrow A> B$

15 tháng 7 2016

dấu < nhé

15 tháng 7 2016

trình bày cách sgiúp mih vs

18 tháng 3 2018

Ta có : 

\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)

\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)

\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)

\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)

\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\) 

\(\Rightarrow\)\(S>10\) 

Vậy \(S>10\)

Chúc bạn học tốt ~ 

3 tháng 4 2016

a=(10^7 -8 +13)/(10^7 - 8) = 1+ 13/(10^7 - 8)

b = (10^5 +6)/(10^5 -7) = (10^5-7+13)/(10^5 -7) = 1 + 13/(10^5-7)

vay b>a

16 tháng 2 2015

a) ta có A=\(\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

             B=\(\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì 10^7-8 <10^8-7 nên 1+ 13/10^7-8>1+13/10^8-7

  Vậy A>B

27 tháng 11 2016

câu a là A>B

27 tháng 11 2016

b/ Ta có 

\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)

\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

c/ Đặt \(10^7=a\)thì ta có

\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)

Giả sử A>B thì ta có

\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)

\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)

\(\Leftrightarrow617a+313>0\)(đúng)

Vậy A>B

c/ Đặt \(10^{1991}=a\)thì ta có

\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)

Giả sử A>B thì ta có

\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)

\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)

\(\Leftrightarrow-81a>0\)(sai)

Vậy A < B

a/ Thì quy đồng là ra nhé

27 tháng 11 2016

a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh

17 tháng 1 2020

a)   Ta có: 

+) \(\frac{10^8}{10^7}\)-1=  108-7-1=10-1=9 (1)

+) \(\frac{10^7}{10^6}\)-1=  107-6-1=10-1=9 (2)

Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1

Vậy..