A=1/100 mũ 2 +1/101 mũ 2 +...+1/2013mũ2 +1/2014 mũ 2 hãy chứng tỏ a < 1/99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1002 + 1/1012 + ... + 1/1992 < 1/99.100 + 1/100.101 + ... + 1/198.199 = 1/99 - 1/100 + 1/100 - 1/101 + ... + 1/198 - 1/199 = 1/99 - 1/199
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 < 1/99 (vì 1/99 đã lớn hơn 1/99 - 1/199 rồi mà G lại còn bé hơn 1/99 - 1/199 nữa)
1/1002 + 1/1012 + ... + 1/1992 > 1/100.101 + ... + 1/199.200 = 1/100 - 1/101 + ... + 1/199 - 1/200 = 1/100 - 1/200 = 1/200
\(\Rightarrow\)Vậy 1/1002 + 1/1012 + ... + 1/1992 > 1/200
Đặt \(A=1+2+2^2+...+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=-1+2^{101}\)
\(\Rightarrow A=2^{101}-1\)
A=\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.........+\(\frac{1}{100^2}\)
A=\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)
\(\frac{1}{4^2}\)<\(\frac{1}{3.4}\)
\(\Rightarrow\)\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{100^2}\)<\(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)< \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+.....+\(\frac{1}{100^2}\)< \(\frac{1}{2}-\frac{1}{100}\)
=>A< \(\frac{1}{2}\)
Ta có: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
Ta thấy: \(\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};\frac{1}{5^2}< \frac{1}{4\cdot5}...\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{100}\Rightarrow A< \frac{1}{2}\left(ĐPCM\right)\)
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Ta có 1/1^2+...+1/100^2<1/1.2+1/2.3+...+1/100.101
Gọi biểu thức này là A thì ta có
A<1/1-1/2+1/2-1/3+1/3-........-1/100+1/100-1/101
Suy ra A<1-1/101
Mà 1-1/101<1<2
\(\Rightarrow\)A<2(đpcm)
\(A=\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)
\(A< \frac{1}{99.100}+\frac{1}{100.101}+..+\frac{1}{2012.2013}+\frac{1}{2013.2014}\)
\(A< \frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2013}-\frac{1}{2014}\)
\(A< \frac{1}{99}-\frac{1}{2014}< \frac{1}{99}\)
Vậy A<1/99