K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2023

Đề bị thiếu dữ kiện! Bạn xem lại.

 

a:AB<AC

=>góc C<góc B

góc BAM+góc B+góc AMB=góc CAM+góc C+góc AMC

mà góc BAM=góc CAM; góc B>góc C

nên góc AMB<góc AMC

b: Xét ΔABC có AM là phân giác

nên MB/AB=MC/AC

mà AB<AC

nên MB<MC

c: góc AMB<góc AMC

=>góc AMB<1/2(góc AMB+góc AMC)=90 độ

=>góc AMB nhọn

a:AB<AC

=>góc C<góc B

góc BAM+góc B+góc AMB=góc CAM+góc C+góc AMC

mà góc BAM=góc CAM; góc B>góc C

nên góc AMB<góc AMC

b: Xét ΔABC có AM là phân giác

nên MB/AB=MC/AC

mà AB<AC

nên MB<MC

c: góc AMB<góc AMC

=>góc AMB<1/2(góc AMB+góc AMC)=90 độ

=>góc AMB nhọn

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

8 tháng 6 2015

khó quá , mk giải hk ra ak ^^

24 tháng 4 2017

Lớp lớn khó quá !

26 tháng 2 2018

Câu hỏi của Nguyễn Hiếu Nhân - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

6 tháng 8 2017

. M A B C N 1 1 1 2 2 2 2 3 3 1

Trên nửa mặt phẳng bờ AC lấy điểm N sao cho \(\widehat{A}_1=\widehat{A}_2\)và AM=AN

Xét tam giác AMB và tam giác ANC có:

AB=AC(tan giác ABC cân)

\(\widehat{A}_1=\widehat{A}_2\)

AM=AN

=> tam giác AMB= tam giác ANC(c-g-c)

=>\(\widehat{M}_1=\widehat{ANC}\);BM=NC

Mà BM<MC

=>NC<MC

Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A

=>\(\widehat{M}_2=\widehat{N}_2\)(1)

Xét tam giác CNM có NC<MC

=>\(\widehat{M}_3< \widehat{N}_3\)(2)

Từ (1),(2)

=>\(\widehat{M}_2+\widehat{M}_3< \widehat{N}_2+\widehat{N}_3\)

=>\(\widehat{AMC}< \widehat{ANC}\)=>\(\widehat{ANC}>\widehat{AMC}\)

=>\(\widehat{AMB}>\widehat{AMC}\)(\(\widehat{ANC}=\widehat{AMB}\))

Trên nửa mặt phẳng bờ AC lấy điểm N sao cho ˆA1=ˆA2A^1=A^2và AM=AN

Xét tam giác AMB và tam giác ANC có:

AB=AC(tan giác ABC cân)

ˆA1=ˆA2A^1=A^2

AM=AN

=> tam giác AMB= tam giác ANC(c-g-c)

=>ˆM1=ˆANCM^1=ANC^;BM=NC

Mà BM<MC

=>NC<MC

Xét tam giác AMN có AM=AN =>tam giác AMN cân tại A

=>ˆM2=ˆN2M^2=N^2(1)

Xét tam giác CNM có NC<MC

=>ˆM3<ˆN3M^3<N^3(2)

Từ (1),(2)

=>ˆM2+ˆM3<ˆN2+ˆN3M^2+M^3<N^2+N^3

=>ˆAMC<ˆANCAMC^<ANC^=>ˆANC>ˆAMCANC^>AMC^

=>ˆAMB>ˆAMCAMB^>AMC^(ˆANC=ˆAMBANC^=AMB^)