cho a,b là hai số bất kỳ, xy là số dương. Cm rằng:
a2/x + b2/y >= (a+b)2/x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
log 9 x = log 6 y = log 4 x + y = c ⇒ x = 9 c , y = 6 c , x + y = 4 c ⇒ 9 c + 6 c = 4 c ⇒ 3 2 2 c + 3 2 c - 1 = 0 ⇒ 3 2 c = - 1 + 5 2 ⇒ x y = - 1 + 5 2 ⇒ a = 1 b = 5 ⇒ T = 1 + 5 = 6
Đáp án B
Đặt log 9 x = log 12 y = log 16 x + y = t ⇔ x = 9 t y = 12 t và x + y = 16 t
Suy ra 9 t + 12 t = 16 t ⇔ 3 t 2 + 3 t .4 t − 4 t 2 = 0 ⇔ 3 4 t 2 + 3 4 t − 1 = 0 ⇔ 3 4 t = − 1 + 5 2
Vậy x y = 9 t 12 t = 3 4 t = − 1 + 5 2 = − a + b 2 ⇔ a = 1 b = 5 ⇒ P = a b = 5
Ta chứng minh BĐT tổng quát
\(\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
Đẳng thức xảy ra khi \(\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+...+\frac{a_n^2}{b_n}\right)\left(b_1+b_2+...+b_n\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
\(\Leftrightarrow\frac{a_1^2+a_2^2+..+a_n^2}{b_1+b_2+...+b_n}\ge\frac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\) (ĐPCM)
BĐT này đúng với BĐT đề bài cho 2 số \(x,y\) dương
T/b: sau này BĐT thông dụng thì tên nó sẽ là BĐT C-S dạng Engel hay BĐT Svac :)