K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

vì a;b>0\(\Rightarrow a+b>=2\sqrt{ab}\Rightarrow1>=2\sqrt{ab}\Rightarrow\frac{1}{2}>=\sqrt{ab}\Rightarrow\frac{1}{4}>=ab\)(bđt cosi)

dấu = xảy ra khi a=b=\(\frac{1}{2}\)

\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=1+\frac{2}{a}+\frac{1}{a^2}+1+\frac{2}{b}+\frac{1}{b^2}\)

\(=2+\left(\frac{2}{a}+\frac{2}{b}\right)+\left(\frac{1}{a^2}+\frac{1}{b^2}\right)>=2+2\sqrt{\frac{2}{a}\cdot\frac{2}{b}}+2\cdot\sqrt{\frac{1}{a^2}\cdot\frac{1}{b^2}}\)(bđt cosi )

dấu = xảy ra khi \(\frac{2}{a}=\frac{2}{b}\Rightarrow a=b=\frac{1}{2};\frac{1}{a^2}=\frac{1}{b^2}\Rightarrow a=b=\frac{1}{2}\)\(\Rightarrow\)dấu = xảy ra khi \(a=b=\frac{1}{2}\)

\(=2+\frac{4}{\sqrt{ab}}+\frac{2}{\sqrt{a^2b^2}}=2+\frac{4}{\sqrt{ab}}+\frac{2}{ab}>=2+\frac{4}{\frac{1}{2}}+\frac{2}{\frac{1}{4}}=2+8+8=18\)

\(\Rightarrow M>=18\Rightarrow\)min M là 18

vậy min M là 18 khi a=b=\(\frac{1}{2}\)

15 tháng 1 2021

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :

\(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2=\frac{\left(1+\frac{1}{a}\right)^2}{1}+\frac{\left(1+\frac{1}{b}\right)^2}{1}\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}=\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)}{2}\)(1)

Lại có \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)(2) 

Từ (1) và (2) => \(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra khi a = b = 1/2

Vậy MinM = 18, đạt được khi a = b = 1/2

25 tháng 9 2019

trả lời lẹ cho tui cấy

Ta có : 

\(M=\left(a+1\right)\left(1+\frac{a}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)

\(=2+\frac{a}{b}+\frac{b}{a}+a+b+\frac{1}{a}+\frac{1}{b}\ge2+2+a+b+\frac{4}{a+b}\)

\(=4+a+b+\frac{2}{a+b}+\frac{2}{a+b}\ge4+2\sqrt{\left(a+b\right)\frac{2}{a+b}}+\frac{2}{\sqrt{2\left(a^2-b^2\right)}}=4+3\sqrt{2}\)

Vậy \(_{Min}M=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5

12 tháng 5 2017

Ta có:

\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow1\ge2\sqrt{ab}\)

\(\Leftrightarrow ab\le\frac{1}{4}\)

Quay lại bài toán ta có:

\(K=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)

\(\ge\frac{1}{\frac{2}{4}}+\frac{4}{\left(a+b\right)^2}=2+4=6\)

Dấu = xảy ra khi \(a=b=\frac{1}{2}\) 

12 tháng 5 2017

khó quá mik chưa học tới lớp 9